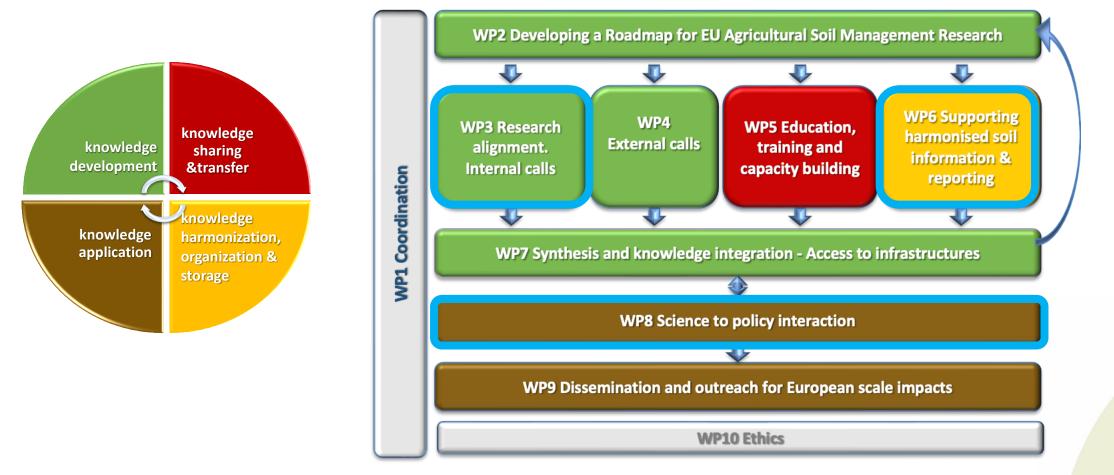
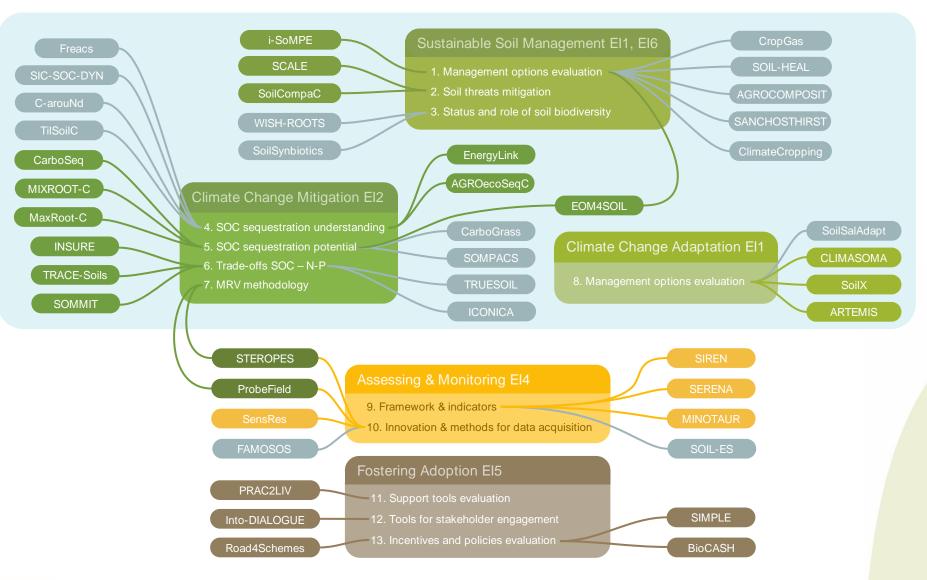


CREA E IL PROGETTO EJP SOII **European Joint Programme SOIL** Towards climate-smart sustainable management of agricultural soils


Maria Fantappiè Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria **AGRICOLTURA E AMBIENTE**

ullet

EJP SOIL: Work Packages structure



EJP = European Joint Programme. È un programma di ricerche integrate, un progetto di progetti Il CREA coordina il WP6 e co-coordina il WP8.

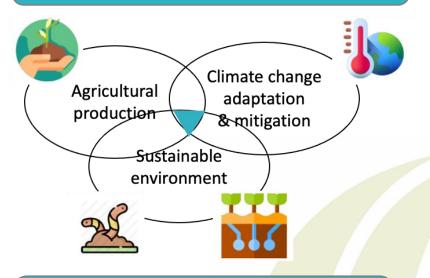
Internal and external research projects

knowledge development

EJP SOIL, Towards climate-smart and sustainable management of agricultural soils: Knowledge framework & expected impacts

understanding of soil management for climate change mitigation, adaptation, sust° production & sustainable environment

understanding soil carbon sequestration and its contribution to climate change mitigation


strengthening scientific capacities and cooperation

supporting harmonised European soil information

fostering the uptake of climate-smart sustainable soil management practices

developping region-specific fertilisation practices

Long-term alignment of soil research

Farmers /farming sector are stewards of land and soil resources

knowledge

development

knowledge

application

knowledge

sharing

&transfer

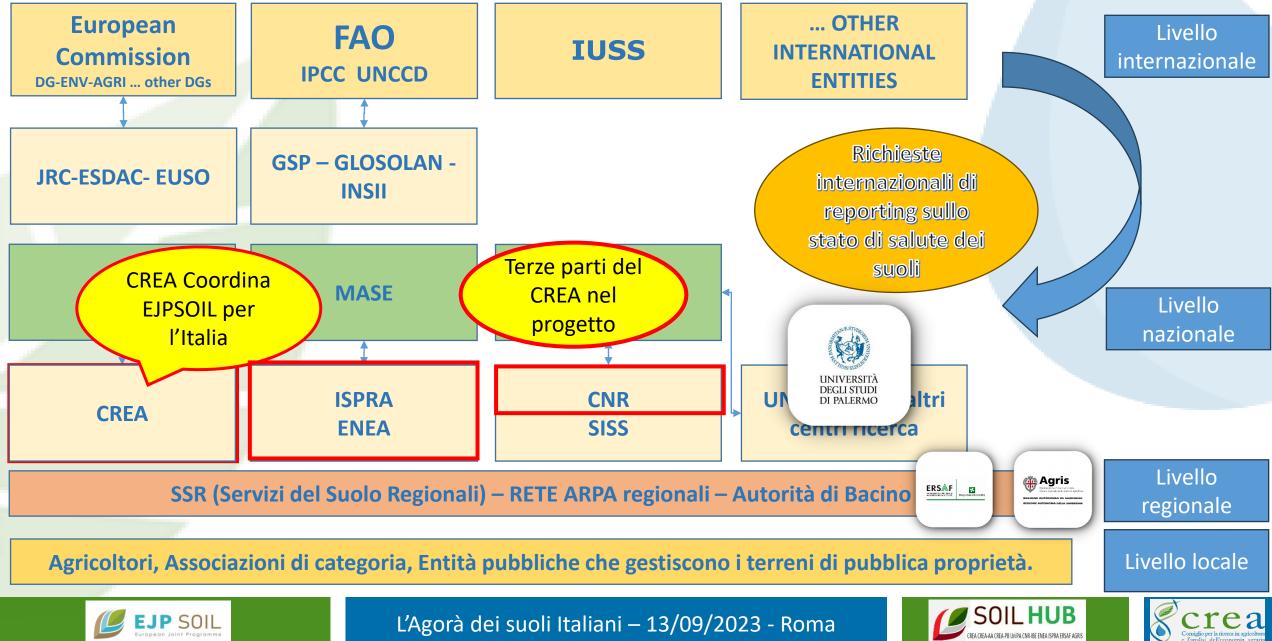
knowledge

harmonization,

organization &

EJP SOIL National Hubs: a new instrument for national stakeholders' consultation & science - policy interface

Industry & Agro-business



In each country, under responsibility of Programme Owners, not compulsory, flexibility

- Provide input & feedback to EJP SOIL programme
- Voice national position & needs
- Contribute to and learn from the work done in research
- Contribute to dissemination of EJP SOIL outputs.

ANALISI DEL CONTESTO ISTUTUZIONALE SUOLO FRA AGRICOLTURA E AMBIENTE

L'ITALIAN SOILHUB - LA RETE NAZIONALE PER LA PROTEZIONE DEL SUOLO

Hub Nazionale Suolo Esperienze a confronto per una Rete nazionale di monitoraggio del suolo

Evento di coordinamento con gli Stakeholder del Programma EJP-SOIL e Progetto SOIL-HUB

Roma, 15 novembre 2022, ore 09:30 Ministero delle politiche agricole alimentari e forestali, Sala Cavour CREA CREA-AA CREA-PB UNIPA CNR-IBE ENEA ISPRA ERSAF AGRIS

Dal 2020 è attivo il progetto SOILHUB, finanziato da MASAF e coordinato dal CREA (**Roberta Farina**), che ha come principale obiettivo proprio la messa a sistema (rete) della complessa realtà di competenze, conoscenze, esperienze in tema di protezione del suolo presenti in Italia.

In questi anni SOILHUB ha supportato l'implementazione e partecipazione dell'Italia al programma EJPSOIL e alla Global Soil Partnership della FAO.

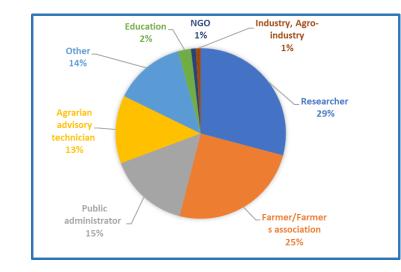
Attualmente ne fanno parte per il livello nazionale CREA, CNR, ISPRA, ENEA, l'UNIPA come rappresentante del mondo accademico, e ERSAF, AGRIS, e IPLA per il livello regionale.

https://soilhub.crea.gov.it/homepage/rea.gov.it

L'Agorà dei suoli Italiani – 13/09/2023 - Roma

WP2 - Knowledge development DEFINIZIONE DELLE PRIORITA' DI RICERCA DELLA ROADMAP

Coordinamento per l'Italia di Silvia Vanino e Roberta Farina del CRE


funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 652615

2024-02-05 EJP SOIL master slides- C.Chenu

Barriers And Opportunities Of Soil Knowledge To Address Soil, Challenges: Stakeholders' Perspectives Across Europe

Table 2. Soil challenge defined as the top priority by stakeholder in the various European Geographic Zones. (SOM=soil organic matter, GHG=greenhouse gases, I=improving, A=avoiding).

	Northern Europe	Western Europe	Central Europe	Southern Europe
SOM & peat soil conservation (I)	42%	40%	31%	16%
Water storage capacity (I)	14%	8%	13%	39%
Soil sealing (A)	6%	3%	17%	18%
Nutrient retention or use efficiency (I)	17%	6%	5%	12%
Erosion (water/wind/tillage) (A)	6%	7%	12%	10%
Soil compaction (A)	7%	7%	12%	0%
Soil biodiversity (I)	3%	11%	5%	2%
GHG emissions (A)	1%	16%	1%	2%
Contamination (A)	6%	0%	0%	0%
Disease suppression (I)	0%	0%	3%	0%
Salinization and acidification (A)	0%	2%	0%	0%

The most important barriers identified by stakeholders are technical, political, social and economic obstacles, which strongly limit the development and full exploitation of the outcomes of soil research.


Four important needed actions were identified to overcome barriers:

- 1) increases in research funding,
- 2) the maintenance and valorization of long-term experiments,
- 3) the creation of knowledge sharing networks and interlinked national and European infrastructures,
- 4) the development of regionally-tailored soil management strategies.

Vanino et al. 2023. <u>https://doi.org/10.1016/j.jenvman.2022.116581</u>

Soil priorities for Italy. A multi-stakeholder consultation, barriers and opportunities for research system

Soil challenges prioritized by stakeholder in Italy. The size of each sphere represents the number of respondents compared to the total stakeholders identified. **R** stands education and research representatives, PA for public administrators, and AD for advisors/technical experts.

Concerning soil knowledge development, the barriers identified by all the stakeholder groups are mainly related to "Capacity building" and "Networks" categories.

This indicates that scientific and technical aspects play a major role in hindering knowledge development, together with the lack of coordination and interconnections among public authorities, research institutions, farmers and farmers' associations.

Opportunities to overcome these barriers can emerge by:

- 1) switching from top down to bottom-up research;
- 2) research funding and critical mass increase in soil science domain;
- 3) enhancing the coordination between public authorities and research institutions.

Vanino et al. 2022. <u>https://doi.org/10.1016/j.geodrs.2022.e00528</u>

WP6 Supporting EU-harmonised soil information systems and reporting e WP3 - Knowledge development alcuni dei risultati dei progetti interni di ricerca su Assessing and monitoring soils

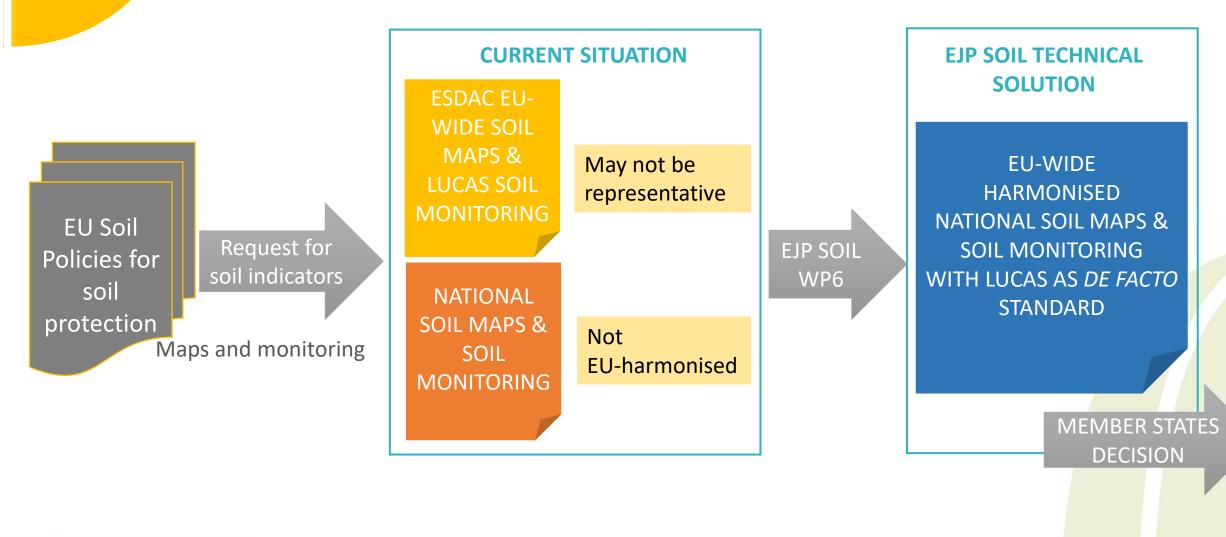
Maria Fantappiè, Fenny van Egmond, Antonio Bispo, Zsófi Bakacsi, Rudi Hessel, Johanna Wetterlind, Bozena Smreczak, Paul van Genuchten, Giovanni L'Abate, Andrea Lachi, Stefania Morrone, Nicolas Saby, Martin Knotters, Claire Froger, Elena Tondini, Dick Brus, Claire Chenu, Silvia Vanino, Roberta Farina, Stefano Mocali, Jack Faber.

EJP SOIL European Joint Programme

funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No

LE POLITICHE EUROPEE PER L'AGRICOLTURA E L'AMBIENTE RICHIEDONO IL MONITORAGGIO DEL SUOLO

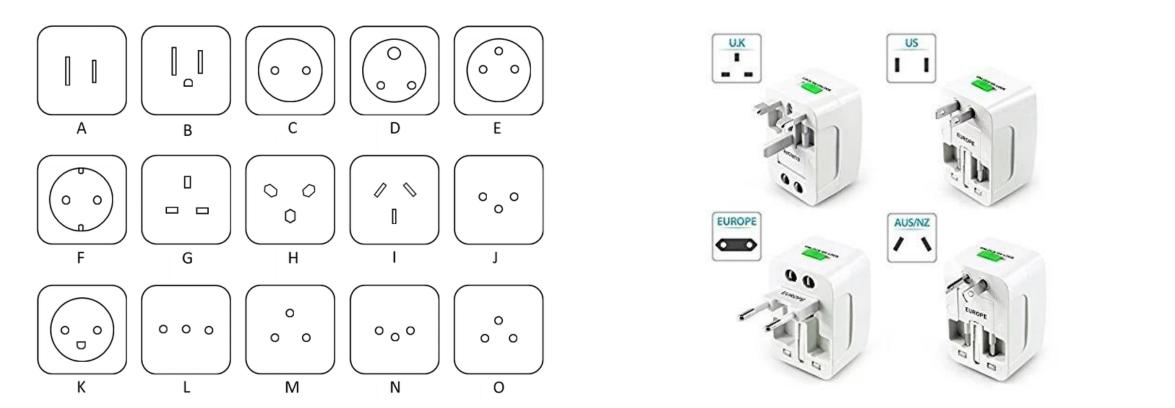
NELLA SOIL MONITORING DIRECTIVE E NEL REGOLAMENTO EUROPEO PER CERTIFICARE ASSORBIMENTI CO2 DA CARBON FARMING, attualmente in via di approvazione, E ANCHE NELLA PAC.


DA INDICATORI ACTION BASED = APPLICAZIONE DELLE MISURE A RESULT BASED = EFFETTI SUL SUOLO.

IL SUOLO SUPPORTA SIA LA FUNZIONE DI PRODUZIONE AGROALIMENTARE CHE NUMEROSE ALTRE FUNZIONI AMBIENTALI.

<u>E' NECESSARIO IL COORDIAMENTO FRA POLITICHE AGRICOLE ED AMBIENTALI E RELATIVI</u> MINISTERI ED ENTI. knowledge harmonization, organization & storage

WP6 - Supporting harmonised soil information and reporting



BUT STANDARDISED DATA IS STILL NOT HARMONISED DATA

STANDARDISED DATA explicit data = FAIR

HARMONISED DATA transformed data to a common standard

Standardisation is describing data in the same way (agreed definitions, structure, format) Harmonisation is translating data to the same units, lab methods, definitions, etc.

EUSO Stakeholders Forum, Data integration, 20-10-2021

The data produced under European Research fundings must follow FAIR principles

Findable

Metadata and data should be findable for both humans and computers

Interoperable

Data needs to work with applications or workflows for analysis, storage and processing

Accessible

Once found, users need to know how the data can be accessed

Reusable

The goal of **FAIR** is to optimise data reuse via comprehensive well-described metadata

We present here the technical contribution of EJPSOIL programme towards the implementation of these principles https://ejpsoil.eu/soil-research/soil-data-monitoring-mapping-and-modelling

WP6 DONE AND TO DO

COMPLETED DELIVERABLES

WP6		D6.1 Report on harmonized procedures for creation of databases and maps	
TASK 6.1TASK 6.2BASIC DATATHEMATIC LAYERSSTANDARDIZATIONSOIL BASELINE		D6.2 Report on the national and EU regulations on agricultural soil data sharing and national monitoring activities D6.3 Proposal of methodological development for the LUCAS programme in accordance with national monitoring programmes	
TASK 6.3 SOIL MODELING SOIL INDICATORS TARGET VALUES SOIL MONITORING	TASK 6.4 SOIL MONITORING IN FIELD PROXIMAL/REMOTE SENSING	COMPLETED – UNDER REVISION PROCESS BY REA AND JRC D6.4 Software framework for a shared agricultural soil information system (confidential for EJP SOIL partners and commission services) D6.5 Guidelines for accounting and mapping agricultural soil carbon, fertility and degradation changes at different scales	
Results available at: https://ejpsoil.eu/soil-data-monitoring-mapping- and-modelling		D6.6 Geodatabase on agricultural soil properties including SOC and agricultural soil functional properties related to water and nutrients CATAL	
		TO BE DONE	
		D6.7 Procedure for mapping of agricultural potential in different present and future climate conditions	
		D6.8 Final version of the agricultural soil information system for EU populated with the final version of project datasets THE EJPSC	OIL
		22 Aprile 2024, RP4 review meeting with REA	

DATASETS

Deliverable 6.1 Report on harmonized procedures for creation of databases and

https://ejpsoil.eu/fileadmin/projects/ejpsoil/WP6/EJ P_SOIL_D6.1_Report_on_harmonized_procedures_f or creation of databases and maps_final.pdf Table of content:

1 Context and rationale

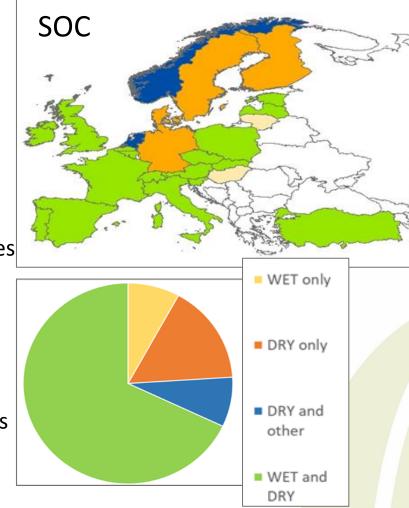
2 Current situation of soil data in EJP SOIL: Evaluation of the stocktake results and other surveys on data sources

3 Harmonised procedures for creation of databases and sharing soil data

4 Sampling theory for mapping and monitoring purposes

5 Harmonised procedures for creation of soil maps

SURVEY ARTICLE 🕺 Open Access 🛛 🕲 🛞 🛞


National soil data in EU countries, where do we stand?

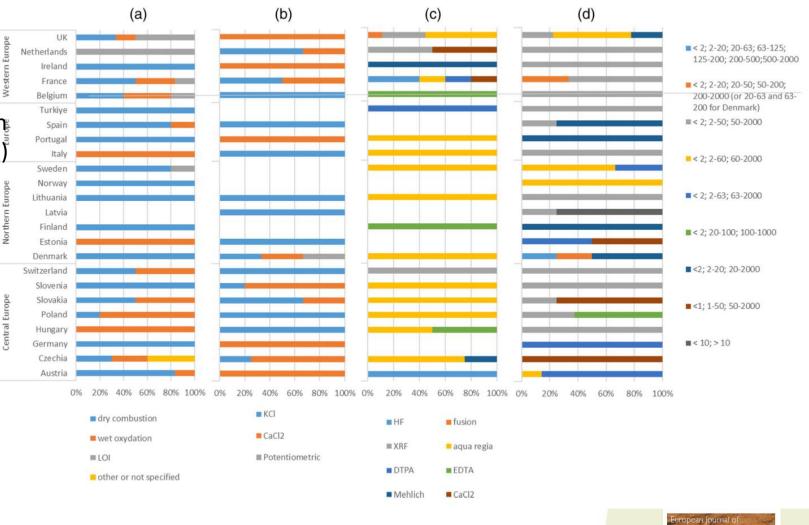
Sophie Comu 😨 Saskia Keesstra. Antonio Bispo. Maria Fantappie. Fenry van Egmond. Bozena Smreczak. Rafał Wawer, Lenka Pavlů, Jaroslava Sobocká, Zsófia Bakacsi. Kinga Farkas-Iványi ... See all authors 🛩 First published: 11 July 2023 | https://doi.org/10.1111/ejss.13398 | Citations: 1

Services SFX pour INRAE

Services SFX pour IN

E SECTIONS

Cornu, S., Keesstra, S., Bispo, A., Fantappie, M., van Egmond, F., Smreczak, B., ... & Chenu, C. (2023). National soil data in EU countries, where do we stand?. European Journal of Soil Science, 74(4), e13398


🏂 PDF 🔧 TOOLS < SHARE

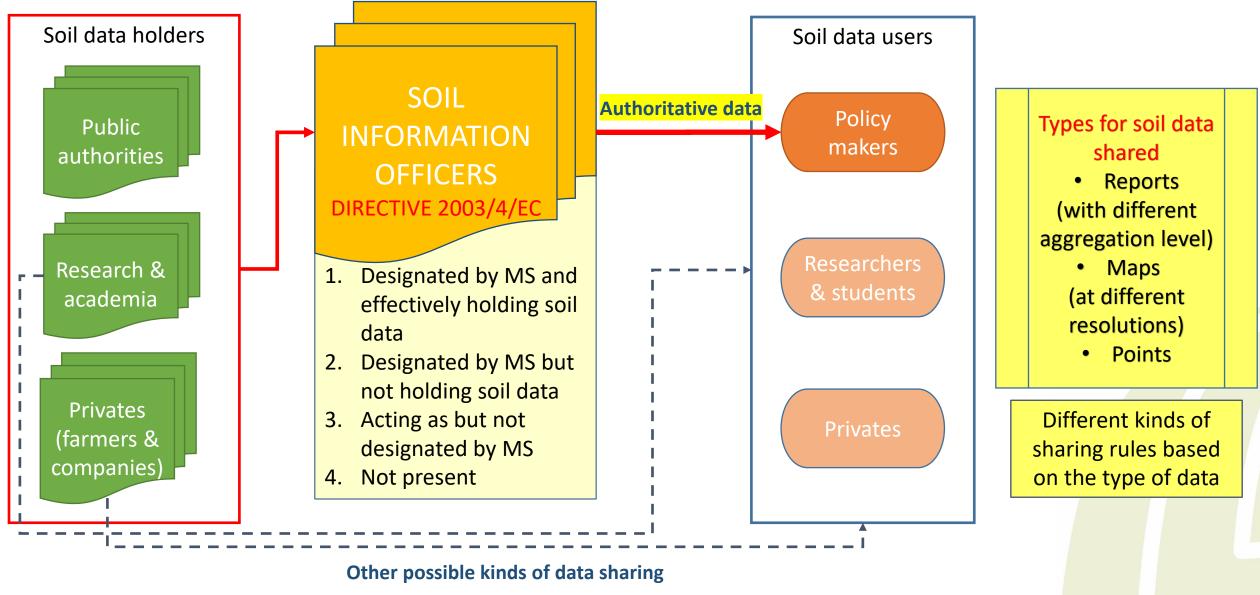
National soil data in EU countries: where do we stand?

Variability of methods used in the databases of the different European countries for: (a) soil organic carbon; (b) soil pH measured in saline solution; (c) trace elements; and (d) particle size distribution.

The methods used by some countries vary because many databases were reported with different scale, while in other countries, such as Germany, only national homogenized database were reported.

LOI stands for loss on ignition.

knowledge

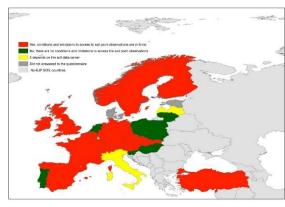

storage

2024-02-05 EJP SOIL master slides- C.Chenu

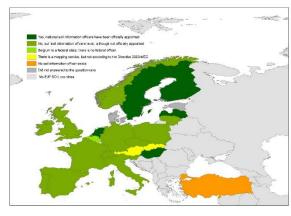
Cornu et al. 2023. EJSS. DOI: 10.1111/ejss.13398

Soil Science

SOIL DATA, DIFFERENT SOURCES, NEED OF SUPPORTING NATIONAL SOIL HUBS


Deliverable 6.2 Report on the national and EU regulations on agricultural soil data sharing and national monitoring activities

 Al there are no constraine and induces to exceed to any prim A query to the solidation and The constraint of the solidation to access to any primary in these The name of the solidation to access to any primary in the solid Do not accessing to the constraints


REPORT ON THE NATIONAL AND EU REGULATIONS ON AGRICULTURAL SOIL DATA SHARING AND NATIONAL MONITORING ACTIVITIES Deliverable 6.2

Fantappiè, M., Peruginelli, G., Conti, S., Rennes, S., Le Bas, C., van Egmond, F., Smreczak, B., Wetterlind, J., Chenu, C., Bispo, A., Oorts, K., & Bulens, J. (2021). Report on the national and EU regulations on agricultural soil data sharing and national monitoring activities. Zenodo. https://doi.org/10.5281/zenodo.10 014912

Sharing rules for gereferenced soil data and for elaborated/aggregated soil data (maps and reports)

Analyisis of soil data owners and soil information officers (officially appointed)

Recommendation One:

The point georeferenced soil data eventually will not be shared online, if there is not the declared consent from the data owner, which may imply obligatorily for some countries/regions/data-owners in the European Union, to get the consent from landowners. The consent for the disclosure of point georeferenced soil data may not be needed only in case of data on emissions of contaminant into the environment.

Recommendation Two:

The soil map data, that is, derived soil data resulting from mapping elaboration, can be published online given that the respective sharing rules are recognized in the metadata, such as intellectual property rights or specific licenses, as defined by the respective data owners.

Recommendation Three:

Stimulating the designation of official soil information officers and network of institutions at national and international level:

- promoting the networking of soil data holders, owners, and expert groups at national and supranational level.
- promoting the signing of specific mutual agreements for soil data sharing agreements between involved institutions and other stakeholders, public and private ones.
- promoting a uniform provision of services by supporting their implementation in case they are not provided yet.

Recommendation Four:

The suggestion is to adopt a 'bottom-up' approach in the soil mapping activities of the European Union involving the national/regional/federal-state soil data officers/services (official or not).

Policy brief near to be released.

Deliverable 6.2 Report on the national and EU regulations on agricultural soil data sharing and national monitoring activities

ANALYSIS OF THE STATE OF IMPLEMENTATION OF THE INSPIRE REGULATION

IN EACH EJPSOIL COUNTRY ... e.g. 4.21 Slovenia

Member State	Directive 2003/04/EC transposed		Directive 2007/02/EC transposed	
a te Structure nitary State		Soil ownership structure Agricultural Institute of Slovenia, University of Ljubljana, <u>https://arhiv.kis.si/pls/kis/!kis.web?j=EN;</u> Biotechnical Faculty, <u>https://www.uni-</u> <u>lj.si/academies_and_faculties/faculties/2013052914461</u> <u>802/</u> .		
INSPIRE contact point		Surveying and Mapping Authority https://www.gov.si/en/state-authorities/bodies-within- ministries/surveying-and-mapping-authority/		
INSPIRE metadata portals and network services		https://eprostor.gov.si/imps/ srv/slv/catalog.search#/home http://www.geoportal.gov.si/		
INSPIRE Geoportal Number of published soil datasets		Other: 1		
SOIL DATA SHARING POLICIES	points	No access constrai	nts	
SOIL DATA SHARING POLICIES polygons		-	depending on th <mark>e data coll</mark> ection cipation in research	
SOIL DATA SHARING POLICIES grids		The access is given framework.	depending on the data collection	

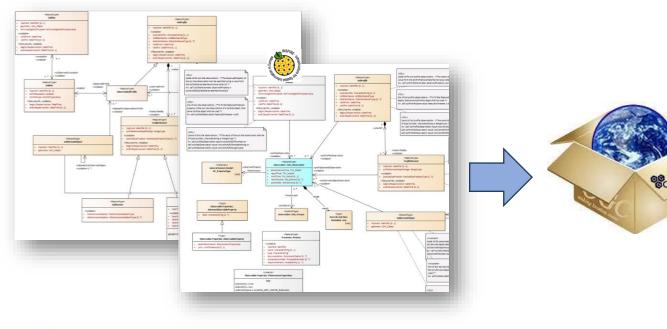
Select a COUNTRY

Austria	B9 1 2 8 1 1 9	Finland	01201000	Latvia	B0120100	Portugal	🖹 5 🛓 2 🞯 2
Belgium	0 0 0	France	B0 1 2 0 1 1 0 0	Liechtenstein	012000	Romania	🗟 3 📥 0 🥥 0
Bulgaria	0120100	Germany	16 14 14 10 16	Lithuania	112101	Slovakia	🕒 15 🛓 3 🕥 3
Croatia	112000	Greece	∎0 ±0 ∞0	Luxembourg	44404	Slovenia	111000
🥑 Cyprus	0 1 2 0 0	Hungary	0 20 0	* Maita	112101	spain	🗟 5 🛓 0 🛛 5
Czech Republic	112001	Iceland	₿0 ±0 ⊕0	Netherlands	24 20 00	Sweden	∎1 ± 1 ⊕1
Denmark	112000	Ireland	₿0 素0 ⊕0	Norway	2120100	Switzerland	₽ 0 \$ 0 @ 0
Estonia	B21 ± 01 @ 1	Italy	B01 + 01 @ 0	- Poland	21 21 0 1		

Soil data shared in the INSPIRE portal for soil theme and comparative analysis in

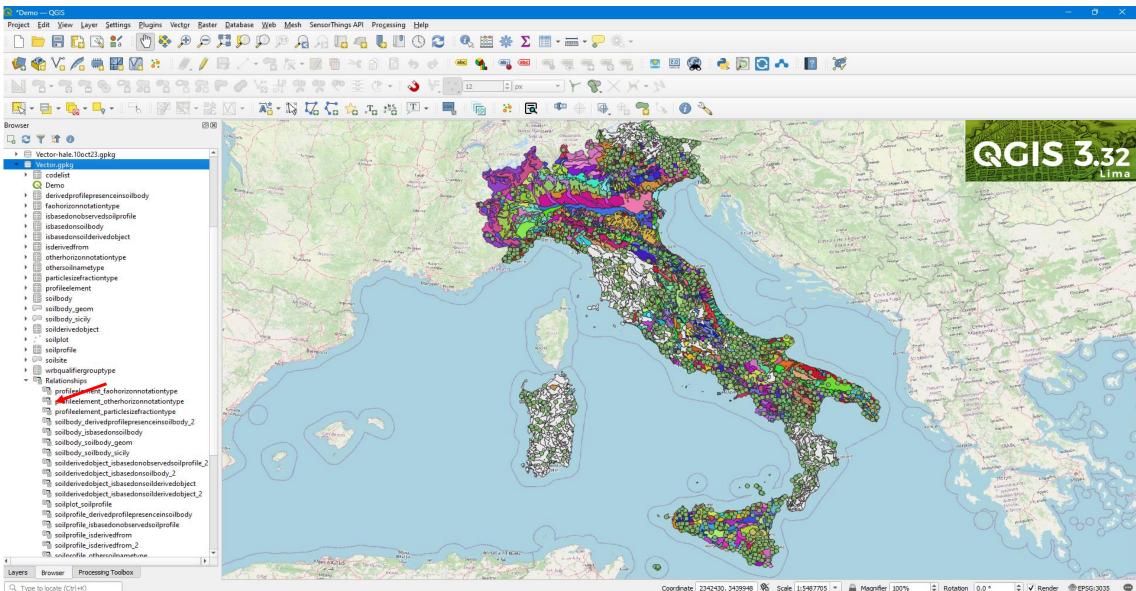
each MS.

ONLY 74 DATASETS!!

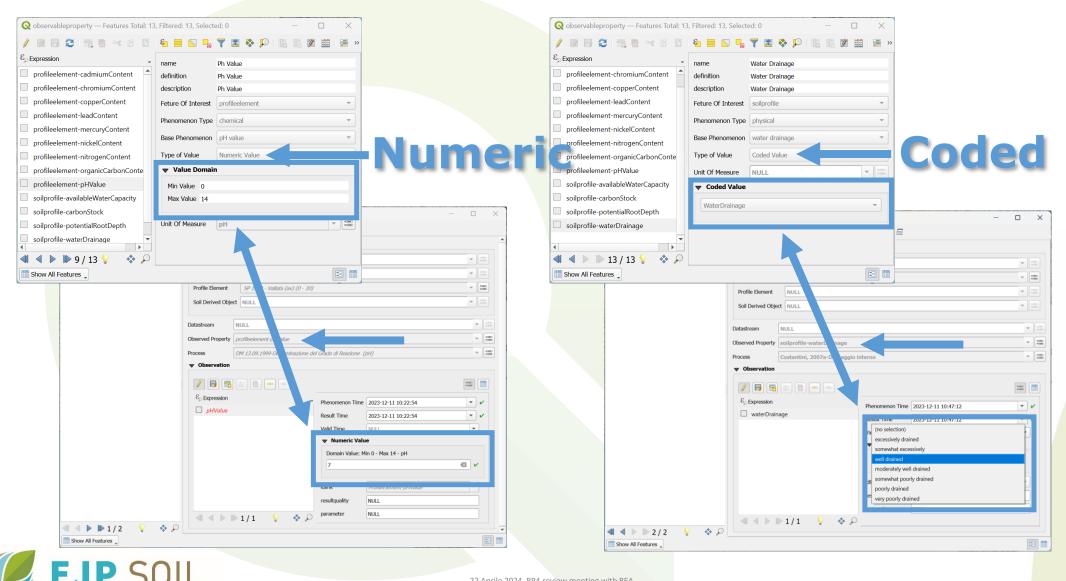


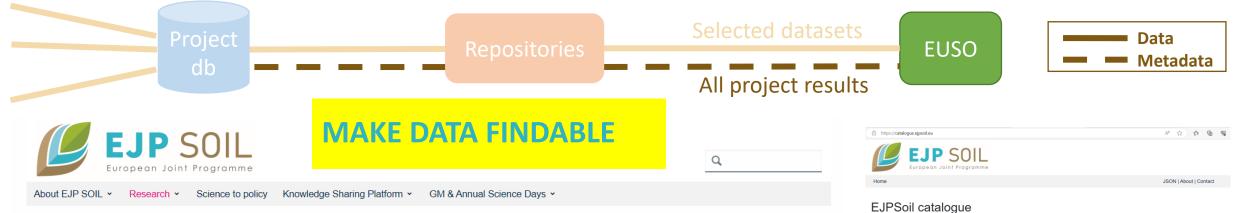
Deliverable 6.4 Software framework for a shared agricultural soil information system –

- cross-border data sharing
- simplified and more usable (INSPIRE) deliveries
- operational efficiency and ease of use

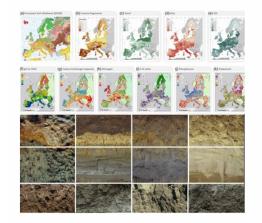


- Performant in GIS environments
- Efficient with limited connectivity and bandwidth


Reusable, readable inside GIS.


22 Aprile 2024, RP4 review meeting with REA

Triggers for quality check in the soil data upload


European Joint Programme

D6.6 Geodatabase on agricultural soil properties including SOC and agricultural soil functional properties related to water and nutrients

EJP SOIL > Research > Soil data & Monitoring, mapping and modelling

Soil data & Monitoring, mapping and modelling

Search the Soil data catalogue system

- The soil data catalogue is a user friendly search experience.
- The catalogue contains:
- > Data products produced in the EJP SOIL and in the wider Soil community
- > An overview of national datasets

Visit the csoil data catalogue via one of the following two points of access:

- > The searchable interface: https://catalogue.ejpsoil.eu
- > A GIT repository GitHub ejpsoil/ejpsoildatahub (The source of the metadata).

An aspect of the catalogue system is a minimal metadata template in Excel, developed to provide a minimalistic approach to bulk loading records into the catalogue. Alternative available bulk loading initiatives are importing from CSW and DOI (harvesting).

In case you identify potential improvements, create an issue on the git repository or submit an improvement.

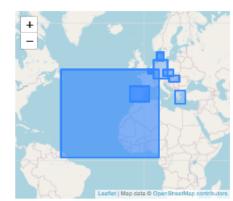
22 Aprile 2024, RP4 review meeting with REA

EJP SOIL is a European Joint Programme Cofund on Agricultural Soil Management contributing to key societal challenges including climate change, wate and future food security.

"These pages present a set of datasets collected in the scope of the EJP Soil project

The objectives are to develop knowledge, tools and an integrated research community to foster climate-smart sustainable agricultural soil management that Allows sustainable food production, Sustains soil biodiversity, Sustains soil functions that preserves ecosystem services. EJP Soil is supported by the European Commission through the torizon 2020 European Union funding for Research & Innovation."

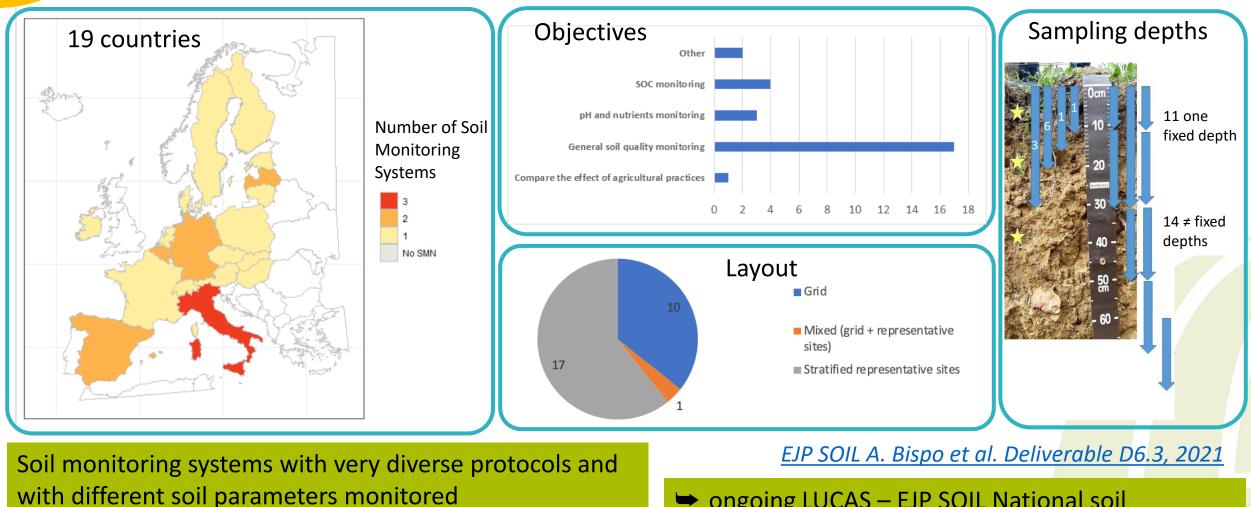
arch		Submit	
ecent changes			
ejpsoil / ejpsoildatahub		Q. Type [] to search	>. + + O n
le 💿 Issues 👔 🖺 Pull requi	ests 💿 Actions 🖽 Projects 🛈 Security 🗠 Insights		
eipsoildatahub Public		() Watch	0 - ♀ Fork 0 - ☆ Star 0 -
P main - P 1 branch O	Go to file	Add file * Code +	About
Genuchten carboseq records	✓ flec	573 on Sep 28 364 commits	No description, website, or topics provider
igithub	Update issue template	5 months ago	CC-BY-4.0 license
datasēts	carboseq records	2 months ago	Ar Activity
lmx 💼	add readme to xml section	9 months ago	 ☆ 0 stars ⊙ 0 watching
gitlab-ci.yml	mass change of file structure, create dedicated folders for res	earch 2 months ago	¥ 0 fories
D LICENCE-CC-BY	shoud not be on github	9 months ago	Report repository
README.md	restore gitlab config	5 months ago	
🗋 index.yml	restore gitlab config	5 months ago	Releases
🗅 pycsw.cfg	restore gitlab config	5 months ago	No releases published
README.md			Packages
EJP Soil Datah	nub @		No packages published
			Contributors 2


Home / Collections / EJPSoil catalogue / Items

JSON | About | Contact

Metadata catalogue

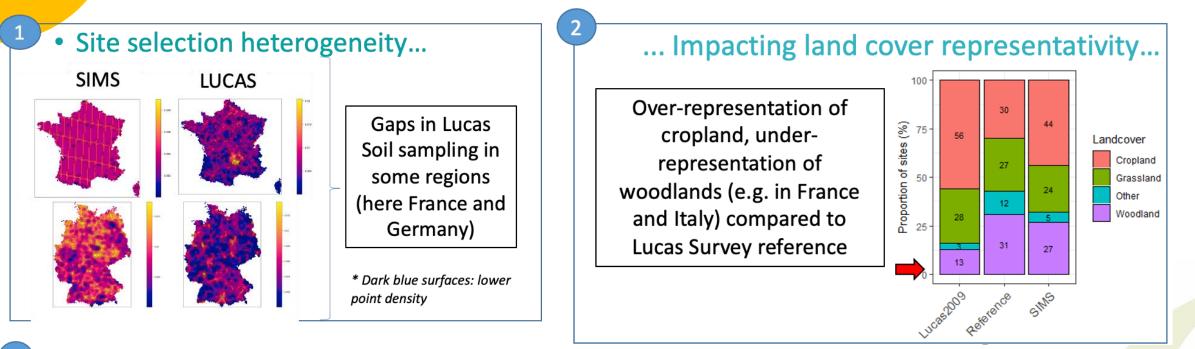
- Records entered based on the stocktake of D6.1 in 2020 on national soil and soil management datasets: <u>Soil data &</u> <u>Monitoring, mapping and</u> <u>modelling (ejpsoil.eu)</u>
- •Searchable with keywords, countries, projects



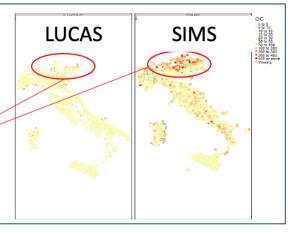
> Belgium > Czech Republic > Denmark > Estonia > Europe > France > German > Greece > Hungary > Ireland > Italy > Latvia > Lithuania > Netherlands > Norway > Poland > Portugal > Slovakia > Slovenia > Spain > Sweden > Switzerland > Turkey > UK EJP Soil > AGROECOseqC > CLIMASOMA > CarboSeq > EJP Soil > EnergyLink

Country

Title	Туре	Date
Potential soil erosion map of Flanders modeling	dataset	2023/11/16
WRB Soil units 40k borehole/profile	dataset	2023/11/16
Soil Organic Carbon Stock Maps for Belgium Soil Organic Carbon Stock Maps for Belgium: mean (1 km grid)	dataset	2023/11/16
Bodemprofielen kartering Belgische bodemkaart Location of soil profiles mapping Belgian soil map	dataset	2023/11/16
Soil Organic Carbon Stock Maps for Belgium (40m grid) borehole/profile depth intervals of the GSOC map (0-30cm)	dataset	2023/11/16
Carbiosol map Top soil measurement	dataset	2023/11/16
Digitale bodemkaart van het Vlaams Gewest: bodemtypes Digital soil map of the Flemish Region: soil types. In accordance with the classification system used: morphogenetic for inland Flanders (substrate, texture class, drainage class, profile development group, phase and variant)	dataset	2023/11/16
<u>Soil Organic Carbon Stock Maps for Belgium</u> Soil Organic Carbon Stock Maps for Belgium: mean (1 km grid)	dataset	2023/11/16
Potentiële bodemerosiekaart per perceel The potential soil erosion map per parcel is based on the 2017 parcel map. The erosion calculation is based on the revised universal soil loss equation or R.U.S.L.E	dataset	2023/11/16
Potential soil erosion aggregated for a grid of 1 km by 1 km in Flanders The potential soil erosion aggregated for a grid of 1 km (ton/ha)	dataset	2023/11/16
Soil map of Flanders (1:20.000) borehole/profile	dataset	2023/11/16
Digital Map of Walloon Soils Whole profile by soil horizons	dataset	2023/11/16
Bodemafdekkingskaart 2015 (BAK), 5 m resolutie (Soil sealing rate)	dataset	2023/11/16
Soil Organic Carbon Stock Maps for Belgium Soil Organic Carbon Stock Maps for Belgium: mean (40 m grid)	dataset	2023/11/16
WRB Soil Units 40k WRB Soil Units 40k: Soil map of the Flemish Region according to the international soil classification system World Reference Base on a scale of 1: 40,000	dataset	2023/11/16
DOV soil database for Flanders	dataset	2023/11/16


Anowledge harmonization, organization & storage programmes

ongoing LUCAS – EJP SOIL National soil monitoring systems intercomparison


Comparison of national soil monitoring systems and LUCAS Soil

... And soil properties distribution.

- Significant differences in carbon content :
 - Over-estimated in French forests (+ 30%)
 - Under-estimated in Italian forests (50%)

Missing locations with high 🛩 carbon content in Italy

- Soil health assessments depend on datasets
- Challenge to assemble the datasets
- Communicate on consequences of sampling on evaluations

knowledge

2024-02-05 EJP SOIL master slides- C. from oger et al. submitted

Slide: © Claire Froger

knowledge storage

SOIL MONITORING SYSTEMS Challenges & recommendations towards harmonization •Differences in sampling strategies, designs and protocols make soil data difficult to

	Advantages	Limitations	EJP SOIL progresses
Compare National and LUCAS datasets	Can identify the main differences and similarities between national and EU datasets	Will require statistical skills to be tested and developed.	Test within EJP SOIL is ongoing and preliminary results are described in the paragraph below.
Develop transfer functions for data produced with national and LUCAS sampling protocols and/or analytical methods	Can improve the use of national and LUCAS datasets together.	Will require time and money for analysis and training (e.g. for sampling).	Tests within EJP SOIL are ongoing in collaboration with the LUCAS Soil programme. Taking the opportunity of LUCAS 2022 campaign, EJP SOIL partners are currently analysing soil samples collected by LUCAS samplers to compare several analytical methods. Some partners also sampled according to the LUCAS protocol in order to compare not only analytical methods but also sampling protocols. Results are expected in 2024.
Identify and test statistical methods to combine national and LUCAS datasets or maps		Will require statistical skills to develop and test appropriate methods.	Tests within EJP SOIL are ongoing, e.g. on data collected with different sampling strategies - included in EJP SOIL WP6 work programme.
Develop framework for interpretation approaches		Will require pedological and statistical skills to develop and test methods.	Tests within EJP SOIL are ongoing- included in EJP SOIL WP6 work programme and connected to SERENA project.

Table 1. Analysis of the harmonisation's options

compare across countries and with LUCAS Soil

•Countries do not want to change their protocols but could add new monitoring sites •Harmonization options of soil monitoring systems and LUCAS Soil exist, such as developing transfer functions

•Major differences between a national soil monitoring system and LUCAS both on sampling strategy and measured soil properties can impact soil quality and soil health assessment

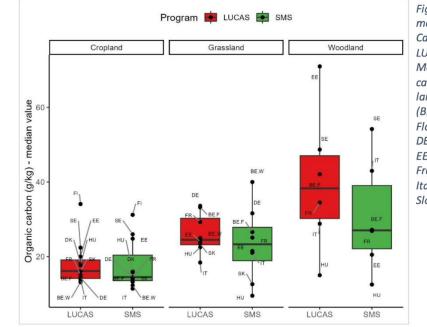
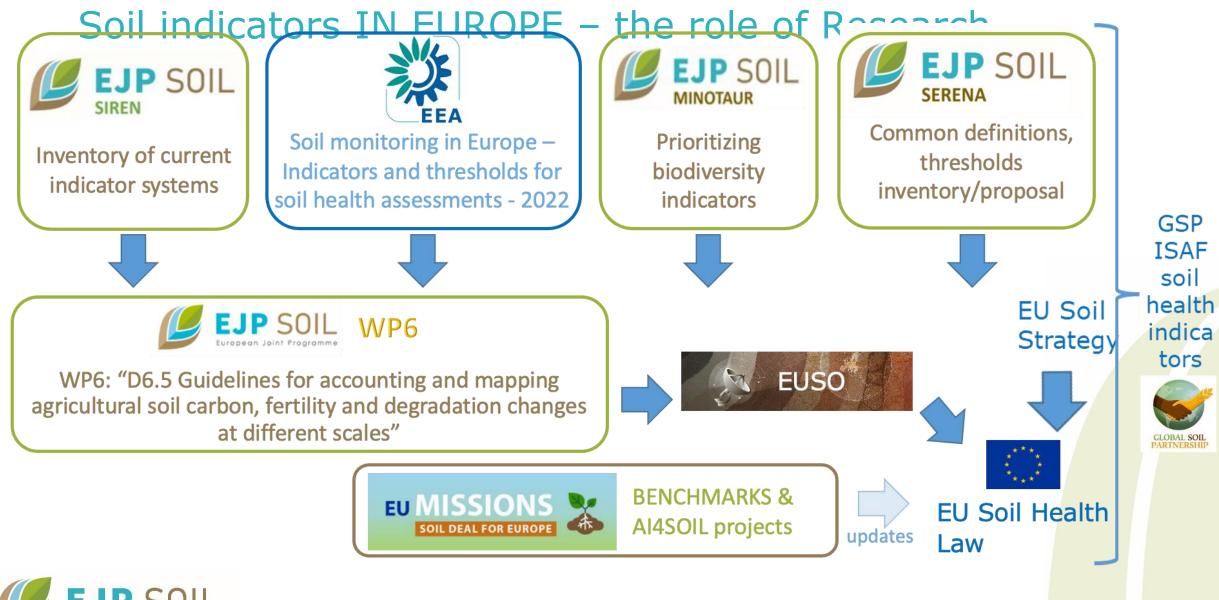



Figure 1. Comparison of measured soil Oraanic Carbon content between the LUCAS and national Soil Monitoring System (SMS) campaigns depending on land cover for ten countries (BE: Belgium with BE.F: Flanders and BE.W: Wallonia; DE: Germany; DK: Denmark; EE: Estonia; FI: Finland; FR: France; HU: Hungary; IT: Italy; SE: Sweden; and SK: Slovakia)

https://ejpsoil.eu/

2024-02-05 EJP SOIL master slides- C. Mason et al. 2023. Policy brief

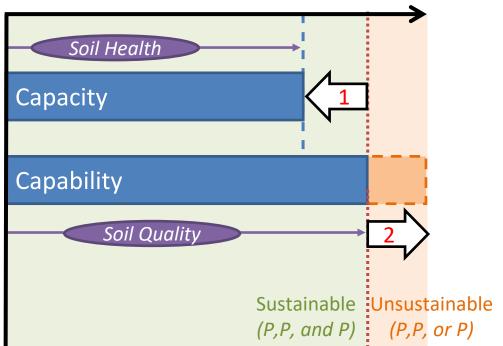
European Joint Proaramme

Soil health and soil quality ... and the criteria to select soil indicators (descriptors/properties) (Descriptors/properties) (Descriptors/Properties) (An extract from the introduction of Deliverable D6.5 under review.

As discussed by EEA report (2023), soil quality is described using soil indicators. These are observed and evaluated soil properties, which can indicate the degree to which soils fulfil expected functions as needed for the wellbeing of crops, livestock, and consequently, human society.

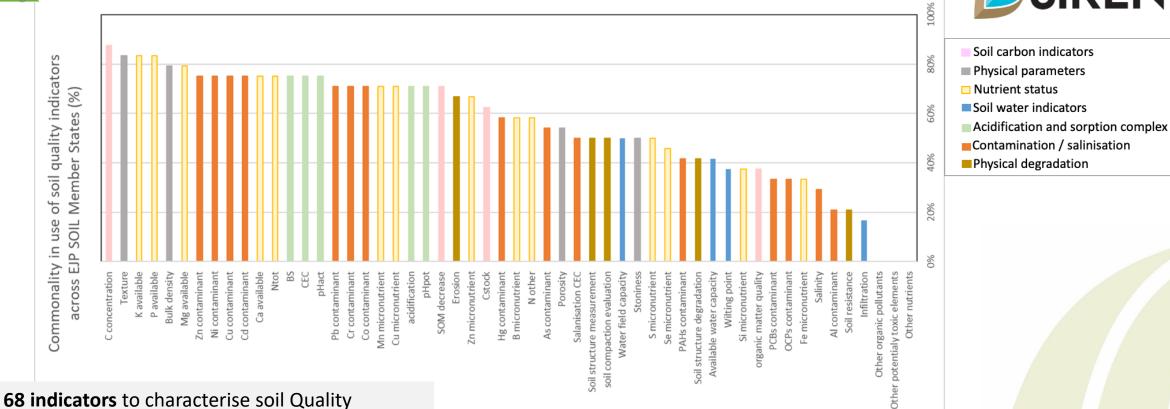
Within EJP SOIL, while soil quality is the potential capability of a soil given soil type and land use, soil health is its actual capacity to deliver goods and services (Faber et al 2022), that is the current state.

Whatever the definition, important selection criteria for indicators, and the underlying soil properties, are:


- 1) their responsiveness to management and changed environmental conditions;
- they must also correlate with soil functions and the environmental processes affected by disturbances and change.

Faber et al. 2021 https://ejpsoil.eu/fileadmin/projects/ejpsoil/Policy_briefs/SIREN/SIREN_Policy_brief.pdf

https://ejpsoil.eu/soil-research/siren


Coordination for Italy Vanino CREA <u>silvia.vanino@crea.gov.it</u>

Ecosystem services provision level

Taking stock of soil indicators and values used by Member States

- Top 2 (C) toyture [N] [D] [Dd]
- Top 3 : [C], texture, [N] [P] [Bd]
- Biological indicators still rarely used
- Organic Pollutants not used
- Few reference, target and threshold values

Faber et al. SIREN final report, 2022 https://ejpsoil.eu/fileadmin/projects/ejpsoil/Policy_briefs /SIREN/SIREN_Policy_brief.pdf

knowledge

development

Coordination for Italy Vanino CREA silvia.vanino@crea.gov.it

2024-02-05 EJP SOIL master slides- C.Chenu

Deliverable 6.5 Guidelines for accounting agricultural soil carbon, fertility and degradation changes at different scales

SOIL FERTILITY INDICATORS	SOIL DEGRADATION INDICATORS
SOC	SOC DECLINE
SOIL NUTRIENTS AND NUTRIENTS BALANCE	SOIL NUTRIENTS DECLINE AND UNBALANCE
ECEC AND EXCHANGABLE BASES	SODIFICATION
рН	ACIDIFICATION
ELECTRICAL CONDUCTIVITY	SALINIZATION
SOIL WATER CONTENT	SOIL ARIDITY
SOIL ROOTING DEPTH	SOIL EROSION
SOIL BIODIVERSITY	SOIL BIODIVERISY LOSS
SOIL STRUCTURE	SOIL COMPACTION
	SOIL SEALING
	SOIL CONTAMINATION

In the revised version

- 1. Why measuring ?
- 2. How to measure ?
- 3. Do we have existing thresholds?
- 4. Recommendations

In the first delivered version

- AVAILABLE THRESHOLDS AND TARGET VALUES USED IN REPORTING/INTERPRETING (BASED ON LITERATURE REVIEW AND/OR SIREN-EEA REPORTS; In this paragraph we will describe what is available in previous stocktakes / on going projects... Or past projects (e.g. https://www.isqaperproject.eu/)
- 2. MODELS AVAILABLE TO DETECT THEIR CHANGES IN RELATION TO CLIMATIC AND MANAGEMENT FACTORS;
- 3. MONITORING THROUGH PS/RS TECHNIQUES (LIMITATION, ACCURACY, APPLICABILITY, COSTS...);
- 4. SCALE EFFECT: LEVEL OF DEPENDANCE TO REPORTING SCALE.
- 5. FINAL RECOMMENDATIONS What we will recommend as a relevant way of accounting for changes in soil fertility and degradation.

UPDATED AND REVISED IN MARCH AFTER JRC REVIEW BUT THE RESULTS ALREADY HAD AN IMPACT

knowledge application

Proposed shortlist "minimum dataset" for harmonised soil quality monitoring across Europe

	Criteria:	Soi
	EU Policy-relevant	Soi
	• >50% MS	
	• >30% sci. literature	
	• Appl. in EU projects	
		Erc
1	Biodiversity data	Sal
		Со
	Structural	Ot
	 Functional 	So
		Wa

Policy Indicator	Soil Quality Indicator		
Soil physical condition	Texture, Porosity, Bulk density		
Soil fertility	C concentration Total N P K pH		
Erosion evaluation	Based on calculation		
Salinity	Electric conductivity		
Contamination	Heavy metal trace elements		
Other contaminants	December and ad to be included		
Soil biodiversity	Recommended to be included		
Water regulation	in a first tier *		

* Based on our selection strategy, we observed significant omissions regarding indicators for soil biodiversity, organic contamination and water regulation/filtration. As soil condition data in these areas are called for by policies and stakeholders and (standardised as well as novel) methods are scientifically available, we recommend to also include relevant indicators in this 1st tier minimum dataset. Based on our stocktake and reviews it is yet impossible to select any without making subjective choices, which we wanted to avoid.

Coordination for Italy Vanino CREA silvia.vanino@crea.gov.it

2024-02-05 EJP SOIL master slides- C.Chenu

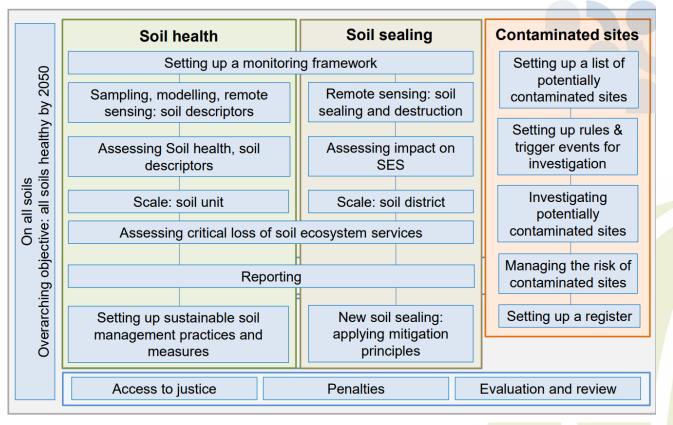
Faber et al. 2021

https://ejpsoil.eu/fileadmin/projects/ejpsoil/Policy_ briefs/SIREN/SIREN_Policy_brief.pdf

From the D6.5 conclusions ...

Analysing the different soil indicators, is clear that it will be arduous to define soil districts, as required by the Soil Monitoring Law proposal, which could satisfy the monitoring requirements of all the soil indicators.

For example, it is possible to define at least 4 main groups of indicators:


- indicators linked to chemical/physical/biological properties of soils;
- 2) indicators linked to hydraulic properties, therefore linked to management at watershed level;
- 3) indicators defined by the loss of available soil surface (sealing);
- 4) soil contamination.

Each of these groups may have different monitoring requirements and/or may require different stratification and thus soil districts defined in different ways.

Finally, there is **reasonable agreement between our review and the indicators proposed by the Soil Monitoring Law**, the EUSO soil dashboard and EEA (2023), **except for certain indicators (e.g. biodiversity, soil sealing, AWC)** and for threshold values that should be discussed and adapted to local conditions.

and the revised version of SML

Structure of the Directive - REV II

Table 5 2 Recommended indicators for common set of soil parameters.

Soil parameters	Soil Quality Indicator	Frequency	Depth and scale	Costs (to be included)
SOC				
	SOC/SOCexp (ØSML).	Can be measured every 5 y since not that expensive but changes	Topsoil and subsoil /Field	10 to 30 € for mesuring SOC
		will only be detected		50 to 80 € for
		after 10 y or more		mesuring SOC stocks (bulk density)
	SOC/SOCmax (ØSML).	10 y	Topsoil and subsoil /Field	
	Delta SOC content (∅SML).	10 y	Topsoil and subsoil /Field	
	Delta SOC Stock (ØSML).	10 y	Topsoil and subsoil /Field	
Nutrients	total N (⊕SML)	10 y	Topsoil/Field	10 to 25 €
	available P (⊕SML)	5-10 y	Topsoil/Field	10 to 40 € (usually done with other nutrients)
	P stocks (∅ SML)	10 y	Topsoil and subsoil /Field	10 to 80 € (usually done with other macro-nutrients)

 \oplus SML : agreement with SML proposal, arnothing SML : disagreement with SML proposal

Soil parameters	Soil Quality Indicator	Frequency	Depth and scale	Costs (to be included)
Contamination	Trace Elements (⊕ SML)	10 y	Topsoil and subsoil /Field	Around 80 € for a set of trace elements (without As or Hg that will require 20 to 50 extra €)
	Selected organics - Common methodology for selection (⊕ SML)	5 y for emerging substances and 10 y for banned ones	Topsoil/Field 0-5 and 0-10 cm may be preferred.	Depends on the group of substances (100- 500 € for each group depending on the status of the method)
Soil structure	Dry bulk density (⊕ SML)	5 y	Topsoil and subsoil /Field	Depends on soil nature for the sampling time, more related to man costs
Sealing	Sealing Soil sealing expressed as % of sealed area per total area (⊕ SML)		Not relevant	Variable depending on methods used and on the area to be investigated
Erosion	Soil loss rate (⊕ SML)	Calculation per year	Depends on erosion process	Made by modelling since field measurements are labour intensive

 \oplus SML : agreement with SML proposal, arnothing SML : disagreement with SML proposal

Table 5 2 Recommended indicators for common set of soil parameters.

Soil parameters	Soil Quality Indicator	Frequency	Depth and scale	Costs (to be included)
CEC/ECEC/Exc Bases	CEC (Ø SML)	Intial campaign	Topsoil and subsoil /Field	20 to 60 €
	ESP (Ex Bases) (Ø SML)	5 y	Topsoil and subsoil /Field	20 to 60 €
pН	pH in water 1:5 soil:water mixture (⊕SML)	er 1:5 soil:water 5 y		10 to 30 €
Electrical conductivity	ECe (⊕SML)	5 y	Topsoil and subsoil /Field	5 to 15 €
AWC	waterflow at the outlet of river basins in relation to rainfall intensity (Ø SML)	5 y	Basin	15 to 65 € er sample and several samples will be needed depending on the size of the investigated basin
	soil water infiltration rate and permeability (Ksat) (∅ SML)		Topsoil and subsoil /Field	Less than 50 €
	soil structure stability (\varnothing SML)		Topsoil and subsoil /Field	Less than 50 €

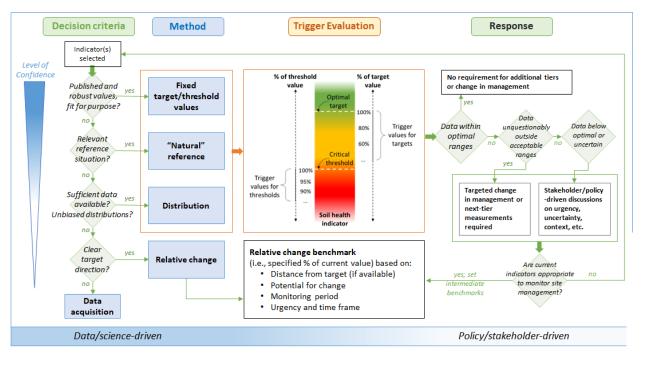
 \oplus SML : agreement with SML proposal, arnothing SML : disagreement with SML proposal

39

Soil parameters	Soil Quality Indicator	Frequency	Depth and scale	Costs (to be included)
Biodiversity	Soil respiration (⊕ SML)	5 y	Topsoil and subsoil /Field	20 to 30 €
	Microbial biomass (⊕ SML)	5 y	Topsoil and subsoil /Field	20 to 30 €
	Enzyme activity (⊕ SML, optional)	5 y	Topsoil and subsoil /Field	20 to 80 €
	Microbial communities (Bacteria, Archaea, Fungi, Protists, Animals) (⊕ SML, optionnal)	5 y Topsoil and subsoil /Field		75 to 100 €
	Microfauna (Nematodes) (⊕ SML, optional)	5 y	Topsoil and subsoil /Field	30 to 120 €
	Macrofauna (earthworms) (⊕ SML, optional)	5 y	Topsoil and subsoil /Field	30 to 140 €
	Mesofauna (⊕ SML, optional)	5 y	Topsoil and subsoil /Field	30 to 140 €

Proposal of a 2-tiered system of biological indicators: tier I

R


European Joint Programme

	Priority level	Recomm	ended indicators	Brief description	Methodology	Estimated cost/sample (sampling not included)	Sensitivity to degradation processes
			Microbial biomass C (⊕ SML)	Amount of microbial biomass per gram soil	ISO 14240-1:1997 ISO 14240-2:1997	20-30€	
		Functional Microbial resp indicators (Ø SML)		Production of CO2 per amount of soil	ISO 16072:2002	20-30€	
	Tier I		Enzyme activity (⊕ SML, optional)	Measurement of several hydrolase activities in soil	ISO 20130:2018 ISO/TS 22939:2019	20-80€	 Decline of SOC Desertification Erosion
	<u></u> .	Macrofauna (Earthworms) (⊕ SML, optional)	Structural and functional diversity	ISO 23611-1:2018	30-140€	4. Soil sealing and urbanization5. Pollution and salinization	
		Structural	Mesofauna (⊕ SML, optional)	Structural and functional diversity	QBS-ar (Parisi et al., 2005)	75-140€	6. Compaction
ecol	ommended	indicators Nematodes	Structural and functional diversity	ISO 23611-4:2006	30-120€		
f	or SML		Microbiota (bacteria and fungi) (⊕ SML, optional)	Structural diversity of soil microbiota	DNA metabarcoding (ISO 11063:2020) and Plassart et al., 2012	75-100€ (for each target)	

 \oplus SML : agreement with SML proposal, \oslash SML : disagreement with SML proposal

41

Setting soil health targets and thresholds for agricultural soils: a framework for their selection and use

Matson et al. under review

The concpets of trigger and target values have been included in the SML rev II text proposal.

Article 7 – Criteria for healthy soil condition

New recital 27a

In order to make a clear distinction between the aspirational long-term objective of the proposal and the operational aspects of implementing sustainable soil management practices, the criteria for healthy soil condition of the soil descriptors are split into non-binding sustainable target values and operational trigger values. The <u>non-binding sustainable target values reflect the long-term</u> <u>aspirational objective of the proposal and do not impose an obligation to act</u>. These target values reflect, based on the current scientific knowledge, the ideal situation where the capacity of soils to provide ecosystem services will not decrease and no significant harm will occur to human health or the environment. However, bearing in mind the need for efficiency and the limited resources available, measures to achieve good soil health need to be prioritized and implemented gradually. Therefore, <u>operational trigger values</u> are needed. These values set in motion appropriate measures to maintain or regenerate soil health. For each aspect of soil degradation, one or several proportional and feasible trigger values are set. This enables a stepwise implementation of measures ranging from vigilance and awareness raising over sustainable management to regeneration practices. Setting the trigger values at Member State level ensures that local conditions and practices and current policies can be fully taken into account. knowledge harmonization, organization & storage

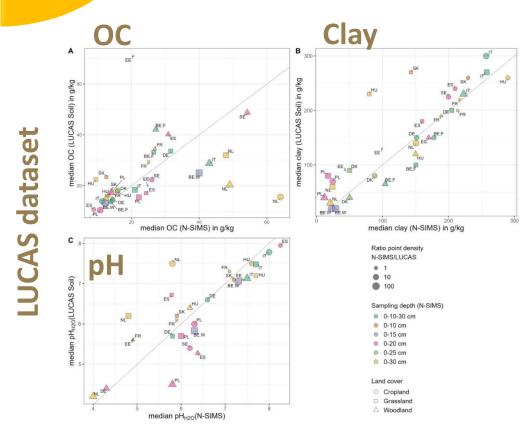
Double sampling exercise - EJPSOIL support for the validation of transfer functions

- Double samples obtained from LUCAS 2022 samplers
- Between 100 and 200 sites will be analyzed depending on the countries
- 17 countries involved
- Comparison of EU and national results

rocedures

Q

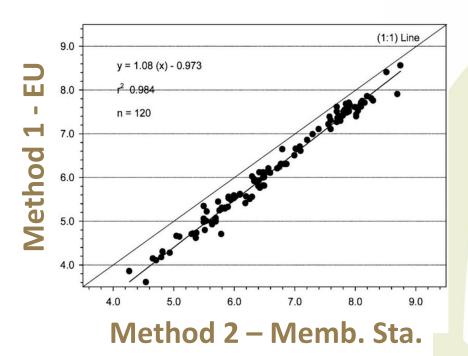
Sampling and analytica


 Sampling (on national SMS and/or on LUCAS 2022 points) according to national and LUCAS sampling protocols

- 6 countries involved
- Compare the overall process

knowledge harmonization, organization & storage

To be done: comparison of LUCAS and national soil datsets and development of transfer/intercomparison methods based on samples collected during LUCAS 2022 campaign


National datasets

• Double sampling exercise done during LUCAS sampling in 2022

 LUCAS samples collected will be analysed by EU and by national labs

 Comparison of results will allow to develop transfer functions

knowledge harmonization, storage

Update of the double sampling exercise – Samples obtained/prepared

Status end of February 2024

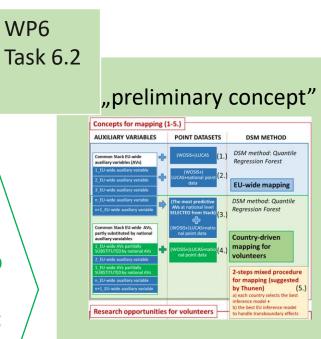
Country	Involve Expected Received %received Preparation Analysis		Analysis	Expected results			
	d						
Austria	yes	718	718	100	Finished	Running	Spring 2024
Belgium, Flanders region	yes	166	150	90	Finished	Finished	Available
Belgium, Wallonia region	yes	100	69	69	Finished	Running	<mark>?</mark>
Czech Republic	yes	1207	1207	100	Finished	Finished	Available
Denmark	yes	150	150	100	Finished	Running	<mark>?</mark>
Estonia	yes	78	78	100	Finished	Finished	Available
Finland	yes	127	127	100	Finished	Running	Spring 2024
France	yes	200	70	35	Finished	Running	Spring 2024
Germany	yes	100	100	100	Finished	Completed	Available
Hungary	yes	107	107	100	Finished	Finished	Spring 2024
Italy	yes	138	138	100	Finished	58 Completed; 81	Available
						completed for biological	
						analyses only	
Norway	no						
Portugal	yes	90	83	92	Finished	Running	February 2024
Slovakia	yes	10	6	60	Running	Running	May 2024
Spain	yes	121	121	100	Finished	Finished	June 2024
Sweden	yes	150	150	100	Finished	Running	March 2024
The Netherlands	yes	300	300	100	Running	Starting	Spring 2024

In June at the latest we wil have all data from MS

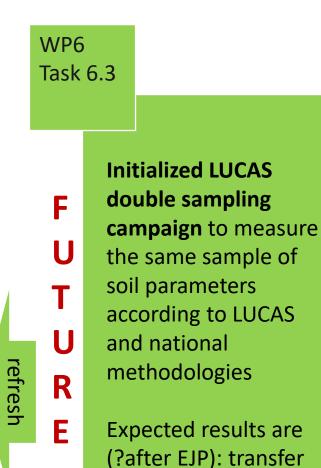
Workflow, joint LUCAS and national Soil Information and Monitoring Systems (SIMS) to achieve the common maps

WP6 Task 6.3

> **Comparison** of soil property data, available in both **LUCAS and SIMS** datasets based on common Rscripts (by INRAE):


Accep

table


result

- identification
- data conversion
- explanatory analysis
- spatial analysis, maps

European Joint Proaramme

EU-wide common auxiliary variable set and shared platform and guidance for mapping

functions

Main outcomes of the meetings and activities (2022 3.Q -2023)

- The set of the **100 m, EU-wide** auxiliary variables was produced by ISRIC, but it was very computationally intensive for Europe (approx. 3 GB per covariate; it took time;)
- Sources: MERIT DEM, Sentinel, Landsat, Copernicus
- Seasonality (green maxima) is difficult to calculate due to cloud cover in northern areas
- •226 EU-wide auxiliary variables, representing the soil forming processes, in 100 m resolution are ready to use for mapping
- Participant countries have to convert national data (e.g. geology) to continental grid
- Added value is to use also national data for EU maps
- We need to **renew** the preliminary concept of mapping
- A DSM workflow platform shared by ISRIC is ready to support national mapping

Genova, G., Poggio, L., Kempen, B., & Colman, B. (2024). DSM Workflow Seedling. ISRIC - World Soil Information. <u>https://doi.org/10.17027/ISRIC-FSX2-2691</u>

DSM Workflow - Seedling

Initial requirements

- Completely R based
- Easy to Use for people with limited DSM expertise
- Multiplatform (Windows, Linux, Mac)
- Running on single laptop/workstation.

The common stack of EU-auxiliary variables

SOURCE	DERIVED
MERIT DEM a high accuracy global DEM at 3 arc second resolution. https://doi.org/10.1002/2017GL072874	Elevation; Slope; Aspect; LandForms; CHILI; TopoDiversity; MTPI; Flow accumulation; Curvature
EU Copernicus DEM, 25m resolution with vertical accuracy: +/- 7 meters RMSE. https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem- v1.1	Elevation; Slope; Topographic wetness index; Multi-resolution Valley Bottom Flatness (MRVBF) index; geomorphon
ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. <u>https://cds.climate.copernicus.eu/cdsapp#!/home</u>	ERA5 DAILY provides aggregated values for each day for: Temperature (2m); Total precipitation; Runoff; Total evaporation; Surface net solar radiation
Global Precipitation Measurement (GPM). 10.5067/GPM/IMERG/3B- MONTH/06	is an international satellite mission to provide next-generation observations of rain and snow worldwide every three hours.
Sentinel 2	Bands calculated: Reflectance bands; Some common indices: NDVI,NDWI, NDSI, NBR2, NDDI; LAI; fapar
Landsat (7,8,9)	Bands calculated: Reflectance bands; Some common indices: NDVI,NDWI, NDSI, NBR2, NDDI; tasseled cap (Brightness, Greenness, wetness); Thermal bands
MODIS, Evapotranspiration/Latent Heat Flux product is an 8-day composite product produced at 500 meter pixel resolution.	Bands calculated: ET; PET; Gpp; PsnNet
Sentinel1	Bands calculated: VV; HH
Copernicus Global Land Cover Layers	100 m land cover map annual updates to the 100m global land cover maps, covering the 2015-2019 period, including the same 23-class classification

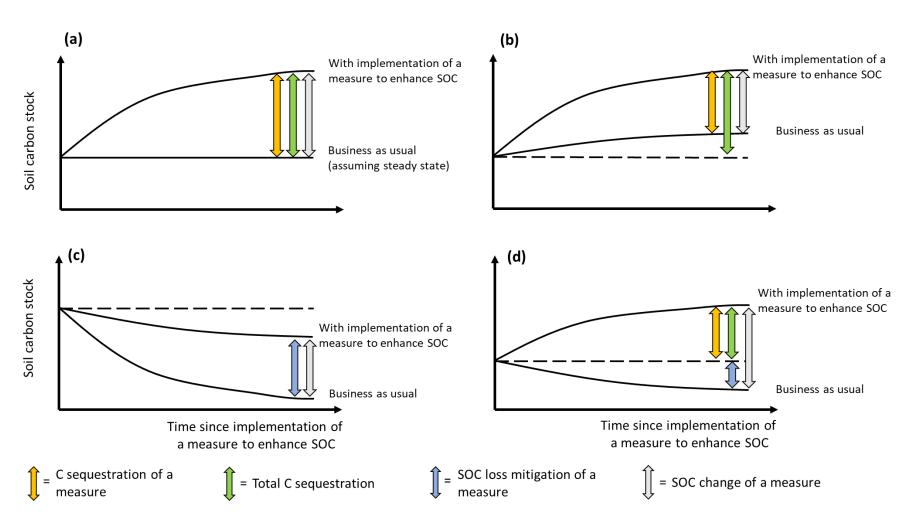
T6.2 **Renewed** concept and main focuses in 2024 (3. and 4.)

	POINT DATA	COVARIATES	DSM method	APROACH	CONDITIONS & RESEARCH QUESTIONS
1	WOSIS+LUCAS 2009	100m covariates stack (ISRIC)	ISRIC script for covariates selection and Quantile Regression Forest	EU-wide	This is a top-down approach as base for comparison.
2	WOSIS+LUCAS2009+national points	100m covariates stack (ISRIC)	ISRIC script for covariates selection and Quantile Regression Forest	EU-wide	Does the adding of national points increase the accuracy? The voluteering countries will share their point data, if necessary, to solve transboundary issues.
3	WOSIS+LUCAS2009+national points (each country separate)	100m covariates stack (ISRIC)	ISRIC script for covariates selection and Quantile Regression Forest	Country driven	This is a country driven approach (which avoid soil point data sharing) but using only common EU-wide covariates. partners
4	WOSIS+LUCAS2009+national points (each country separate)	100m covariates stack (ISRIC) + substituted by national covariates	ISRIC script for covariates selection and Quantile Regression Forest	Country driven	Does the use of national covariates improve the accuracy, and what is the transboudary effect?
5	 2-step procedure: a) best national point data (each country decide it, to include or not also WOSIS +LUCAS) b) WOSIS+ LUCAS 	 2-step procedure: a) each country selects the best covariates b) the maps produced at step a) will be used as predictors (merged) + the most predictive EU-wide auxiliary variable selected with approach 1 (with respect to pH in water, first) 	2-step procedure:a) each country selects the best inference modelb) the best EU inference model	mixed	Proposal from THUNEN It would constitute a way to merge country-driven soil maps Does the method get to smoothy the trensboundary effects, and what is the effect on accuracy?

Concepts 3-4. are bottom-up approaches. It can be done with volunteers, 5 countries have so far indicated their participation (Netherlands, Italy, Hungary, Germany and France)

Germany: earlier they offered their contribution in the concept-5., which would be a mixed method for finally an EU-wide mapping product.

WP3 - Knowledge development ALCUNI DEI RISULTATI DEI PROGETTI INTERNI DI RICERCA

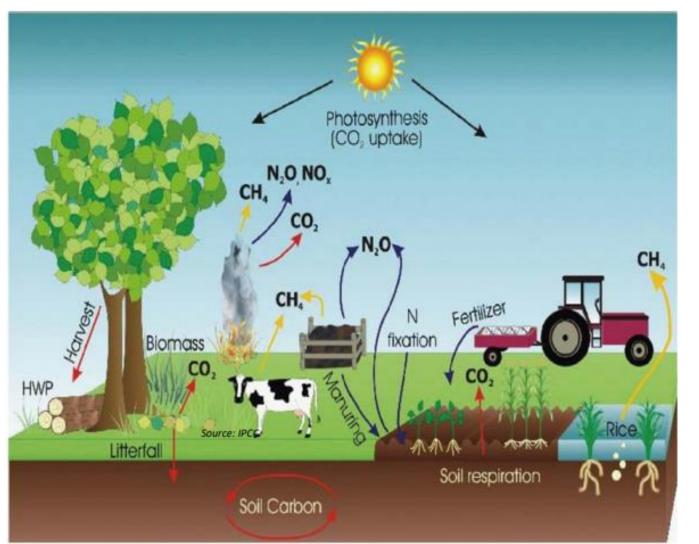

Sustainable soil management Climate change mitigation Climate change adaptation Assessing and monitoring soils Fostering adoption of sustainable soil management practices

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 652615

Carbon sequestration in soils and climate change mitigation – Definitions and pitfalls

CARB SEQ

Il contenuto di SOC dello scenario Business as Usual (= nessuna misura di carbon farming adottata) varierà in base al clima futuro. Dunque, l'effetto delle misure di carbon farming potrà non essere visibile in termini di sequestro effettivo di SOC nel suolo, ma solo in termini di mitigazione delle perdite di SOC.


Don et al. 2023 Global Change Biology, DOI: 10.1111/gcb.16983

2024-02-05 EJP SOIL master slides- C.Chenu

Coordination for Italy Farina CREA roberta.farina@crea.gov.it

The SOMMIT project will evaluate trade-offs and synergies between soil C sequestration, nitrous oxide, methane and nitrate losses as affected by soil management options aimed at increasing soil C storage.

EJP SOIL

Σομμιτ

https://ejpsoil.eu/soil-research/ommit

Coordination Lagomarsino CREA alessandra.lagomarsino@crea.gov.it

Trade-offs and synergies of soil carbon sequestration – Review of knowledge (gaps)

	EJP SOIL EOMMIT
--	--------------------

Soil management strategy	SOC o	OC change N2O emission CH4 emission mitigation mitigation		-		N lea	ching
Tillage management	sant	7	?		?		?
Cropping systems	ROT; LEG; ORG; CONS		CONS; CC; CC incorpor- ated into the soil; CG; CF	CONS; ORG; PER	ORG; AGF; CG; CF	CC; LE	G; ORG
Water Management					?		
Fertilization and OM input – Crop residues					N/A		
Fertilization and OM input – Cover crops	*		F	*	N/A	B	*
Fertilization and OM input – Livestock manure, slurry and compost			?		N/A	N	/A
Fertilization and OM input – Biochar							
Fertilization and OM input – <i>Liming</i>					N/A		

Table legend

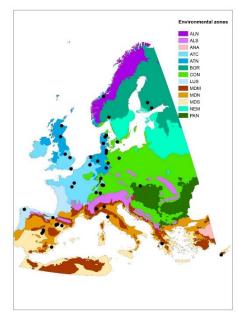
N/A: Not Assessed; 🚧 no-tillage (zero-till); 📉 non-inversion tillage (minimum/ reduced tillage); 🌋 legume 🛛 🌾 non-legume

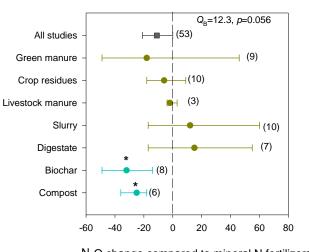
Impact: Positive (green color), negative (red color), no difference (grey color)

positive negative neutral

Maenhout et al. (2024) Submitted to EJSS

0	0	0	
Tillage Management	Cropping Systems	Water Management	Fertilization and OM
			inputs
-Inversion tillage	-Monoculture	-No irrigation	-Crop residues
-Non-inversion tillage	-Crop rotation	-Drip irrigation	-Cover crop (Green
-No tillage	-Intercropping	-Flood/Furrow irrigation	manure / Mulch)
	-Permanent crop	-Sprinkler irrigation	-Livestock manure
	-Agroforestry	 Center pivot irrigation 	-Slurry
	Alley cropping	Lateral move irrigation	-Compost
	Hedgerows /	Solid-set sprinkler	-Biochar
	Shelterbelts	irrigation	-Liming
	Silvopasture	Hand move sprinkler	-Digestate
		irrigation	-Sludge
		Traveling gun sprinkler	
		irrigation	


Soil managment strategies: 4 categories


Knowledge gaps and research recommendations

- Effect of soil management strategies on C-sequestration AND N₂O emissions AND CH₄ emissions AND N-leaching
- Interaction effects of soil management strategies
- Pedo-climatic conditions
- Long term effects

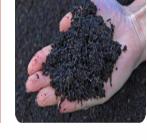
Coordination Lagomarsino CREA alessandra.lagomarsino@crea.gov.it

N₂O emissions changes due to organic matter (OM) inputs -A meta-analysis

 $\rm N_2O$ change compared to mineral N fertilizers (%)

- Over 50 field studies in 15 European countries
- The effects of seven OM types applied either along or in combination with mineral N fertilizer were studied.
- Comparison with mineral N fertilizer

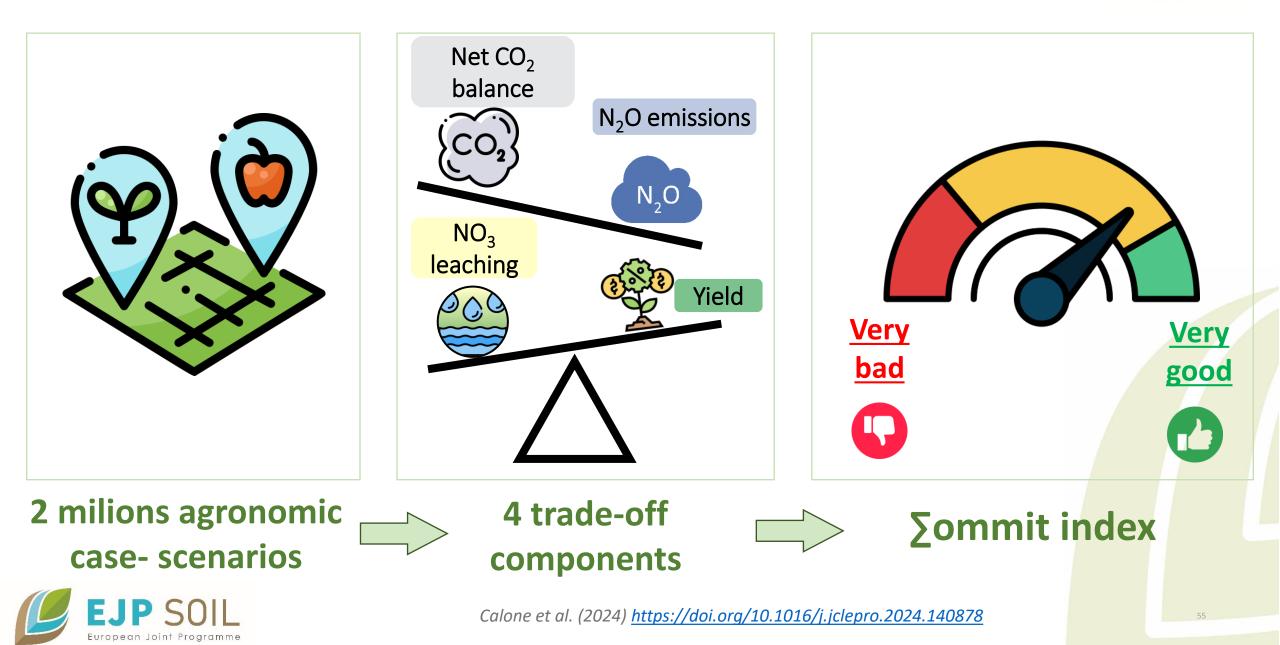
Overall Effect:


A slight tendency to reduce N₂O emissions by 10%

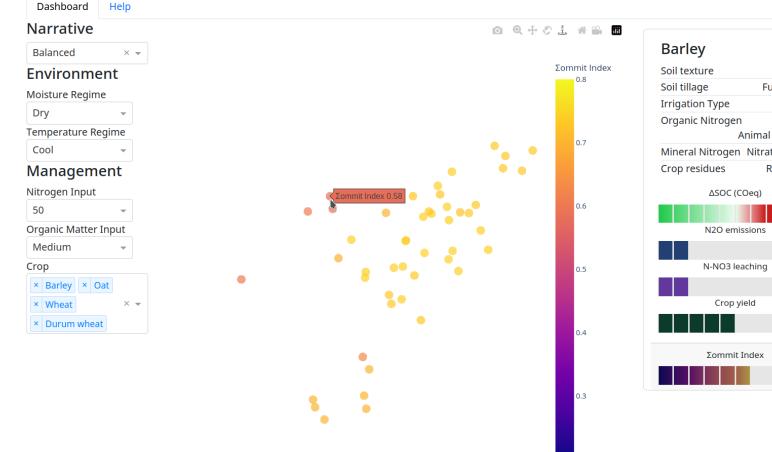
- Compost and Biochar :
 Mitigated N₂O by 25 % and 33%, respectively.
- Mitigation depends
- ✓ on climate
- ✓ soil properties (pH and sand)

Other OM:

No effect compared to mineral N
 Application strategy important:
 ✓ -16% (OM alone)
 ✓ + 14% (OM+ Mineral N)

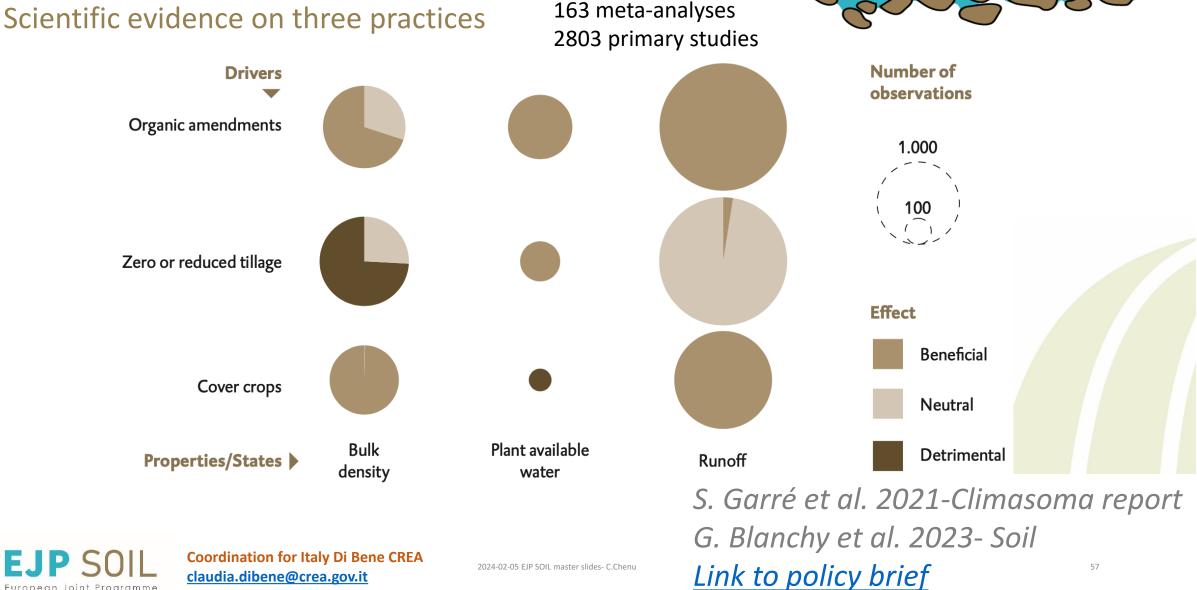


Coordination Lagomarsino CREA alessandra.lagomarsino@crea.gov.it **EJP** SOIL


Trade-off assessment system and the Σommit index

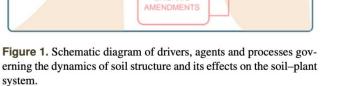
Σommit Trade-offs analysis

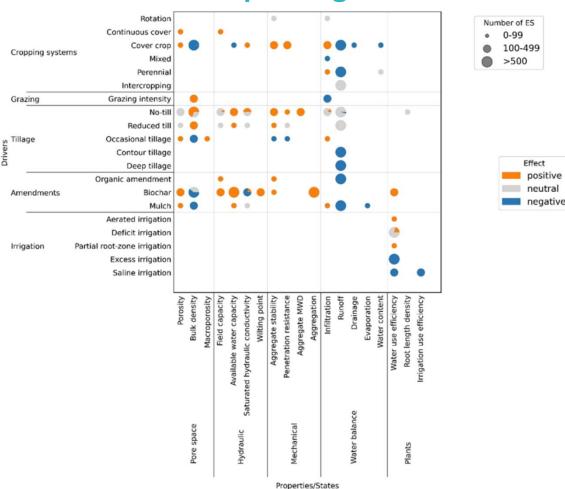
Clay Full tillage No irr Animal manure Mineral Nitrogen Nitrate based Removed 71% 12% 14% 43% 58%



online tool https://github.com/kofm/sommit-dashboard

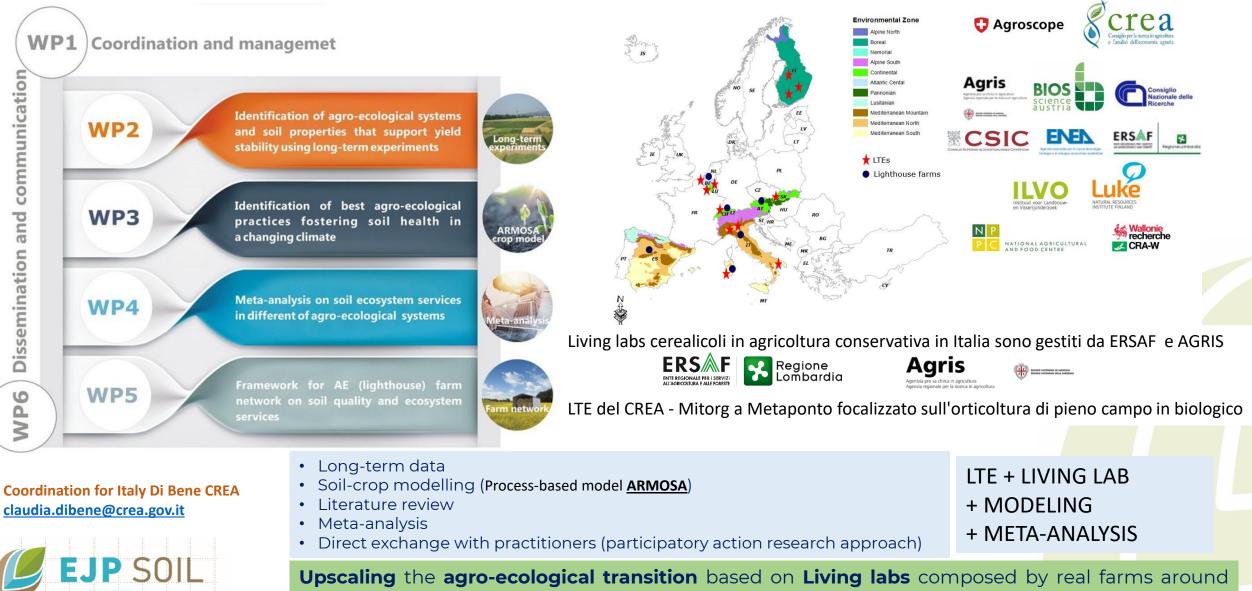
Soil and crop management practices and the water regulation functions of soils: a gualitative synthesis of meta-analyses relevant to European agriculture


uropean Joint Proaramme



Soil and crop management practices and the water regulation functions of soils: a qualitative synthesis of meta-analyses relevant to European agriculture

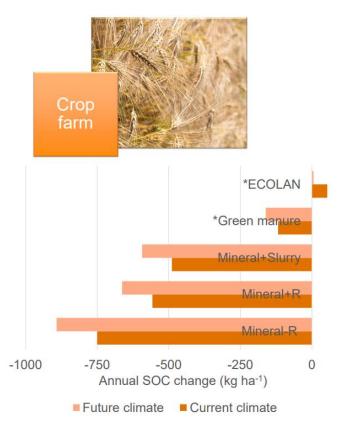
Figure 5. Effects of drivers (vertical axis) on target variables (horizontal axis) in the 36 selected meta-analyses. The colored pie charts represent the directions of the statistical effects in the different meta-analyses, while the size of the circle indicates the total number of effect sizes (ESs) reported. Note that this number has not been corrected for redundancy. Blank cells denote that no data were available for this target variable in any of the selected meta-analyses.



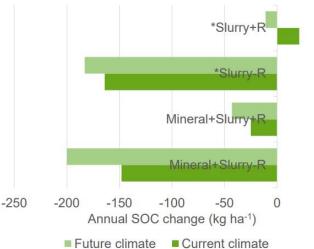
Coordination for Italy Di Bene CREA claudia.dibene@crea.gov.it

2024-02-05 EJP SOIL master slides- C.Chenu

Blanchy et al. 2023 <u>https://doi.org/10.5194/soil-9-1-2023</u>


AgRo-ecological strategies for promoting climaTE change MItigation and adaptation by enhancing Soil ecosystem services and sustainable crop production

the field research and stakeholders' community.

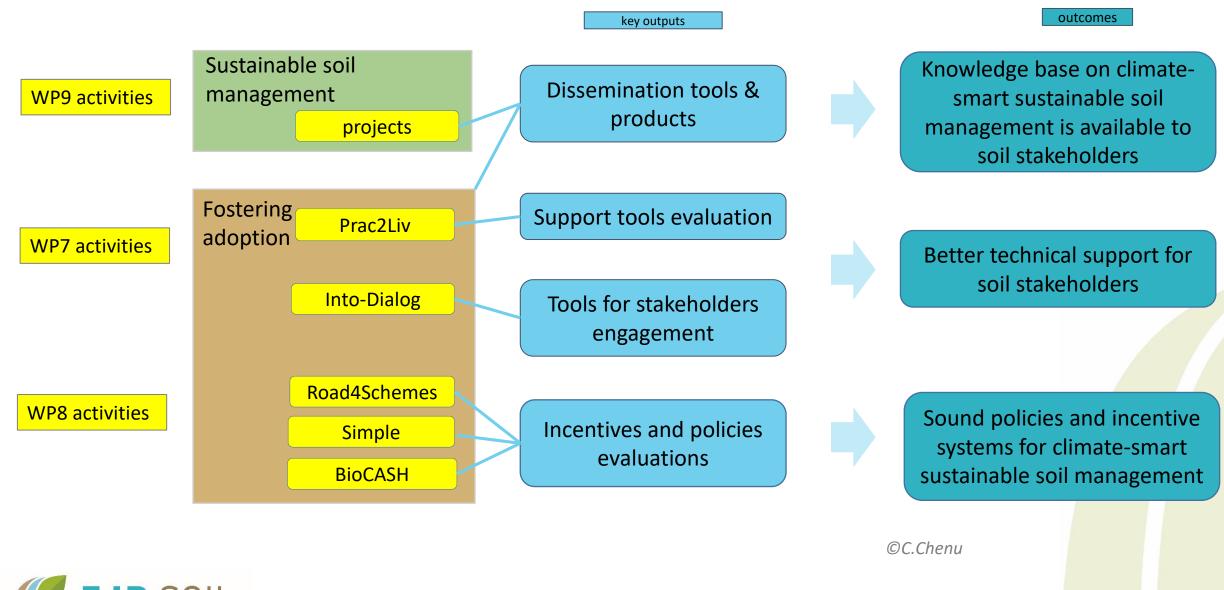

ARTEMIS

Alcuni risultati preliminari di ARTEMIS, simulazioni con ARMOSA di variazione di SOC in suoli agricoli della Finlandia

Figure 1. Annual SOC change in crop production farms for current climate and future climate scenario. Crop residues removed (–R) or retained (+R). ECOLAN: meat and bone meal-based commercial organic fertilizer. Organic farming marked by *

Figure 2. Annual SOC change in livestock production farms for current climate and future climate scenario. Crop residues removed (–R) or retained (+R). Organic farming marked by *

METHOD


50

- Process-based model ARMOSA
- For both current (1999-2018) and near future climate scenarios (2020-2040, RCP 6.0) MODEL INPUTS
- Daily meteorological data from Mikkeli station
- Statistical data in the region during the last 20 years
 CONCLUSION
- Climate change will challenge C storage in agricultural soil, and organic farming may provide a means for tackling this problem.

Autori: Elena Valkama (LUKE), Alessia Perego and Marco Acutis (UNIMI)

EJP SOIL EI5: Fostering the uptake of soil management practices which are conducive to climate change adaptation and mitigation

EJP SOIL

An analysis of existing carbon farming schemes

CARBON FARMING

Carbon farming means taking actions that lead to an increase of the carbon content of the soil or to a decrease in carbon emissions, e.g. caused by oxidation, additional to standard soil management.

Scheme

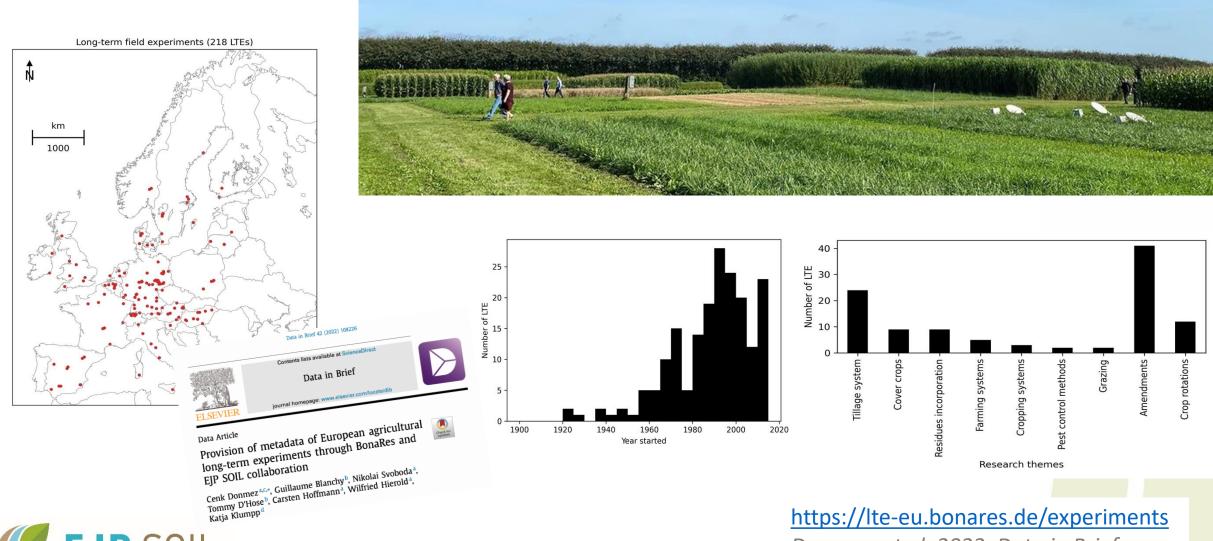
A scheme is any voluntary agreement in which a farmer or a group of farmers commit themselves to apply carbon farming measures in return for a payment in any form.

https://ejpsoil.eu/science-to-policy

http://reports.crea.gov.it/powerbi/CarbonSchemesInventory.html

Coordination for Italy Martelli CREA andrea.martelli@crea.gov.it

2024-02-05 EJP SOIL master slides- C.Chenu


Knowledge sharing and transfer

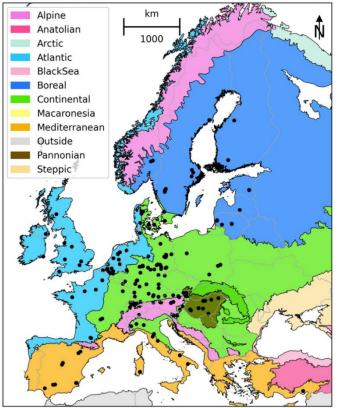
Inits project in the European Union's Horizon 2020 research and innovation programme under grant agreement No 652615. knowledge development knowledge sharing &transfer

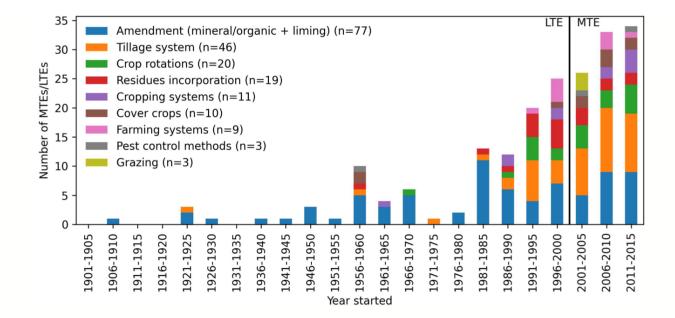
Research infrastructures: Long Term Experiments

Dommez et al. 2022, Data in Brief

An open-source metadataset of running European midand long-term agricultural field experiments

Mid- and long-term field experiments (240 MTEs/LTEs)


knowledge


sharing

&transfer

knowledge

development

FIGURE 6 Evolution of newly started MTEs/LTEs with respect to their research themes. Note that one MTE/LTE can have several research themes (e.g. it can investigate both tillage and cover crops) and hence can be counted multiple times. The research theme about 'amendments' includes experiments that investigate mineral/organic or no fertilizer (67 MTEs/LTEs) and 10 MTEs/LTEs investigating liming.

FIGURE 3 Distribution of the collected mid- and long-term field experiments across Europe with European biogeographical regions.

Dommez et al. 2023, Soil Use and Management DOI: 10.1111/sum.12978 https://lte-eu.bonares.de/experiments

2024-02-05 EJP SOIL master slides- C.Ch

https://ejpsoil.eu/knowledge-sharing-platform/webinar-recordings

Visit the EJP SOIL website!! <u>https://ejpsoil.eu/</u>

Q

About EJP SOIL

Research

Science to policy Knowledge Sharing Platform

Annual Science Days 2024

Advancing the understanding of soil science across Europe - Read the latest Newsletter EJP SOIL on SCIENTIFIC PUBLICATIONS & DATA - Material & Links available Watch the recorded webinar on the EU Proposal for a Law on Soil Check out the 3rd EJP SOIL EU Policy Forum - Carbon sequestration & Associated trade-offs

